{"title":"Development of a continuum robot enhanced with distributed sensors for search and rescue","authors":"Yamauchi, Yu, Ambe, Yuichi, Nagano, Hikaru, Konyo, Masashi, Bando, Yoshiaki, Ito, Eisuke, Arnold, Solvi, Yamazaki, Kimitoshi, Itoyama, Katsutoshi, Okatani, Takayuki, Okuno, Hiroshi G., Tadokoro, Satoshi","doi":"10.1186/s40648-022-00223-x","DOIUrl":null,"url":null,"abstract":"Continuum robots can enter narrow spaces and are useful for search and rescue missions in disaster sites. The exploration efficiency at disaster sites improves if the robots can simultaneously acquire several pieces of information. However, a continuum robot that can simultaneously acquire information to such an extent has not yet been designed. This is because attaching multiple sensors to the robot without compromising its body flexibility is challenging. In this study, we installed multiple small sensors in a distributed manner to develop a continuum-robot system with multiple information-gathering functions. In addition, a field experiment with the robot demonstrated that the gathered multiple information has a potential to improve the searching efficiency. Concretely, we developed an active scope camera with sensory functions, which was equipped with a total of 80 distributed sensors, such as inertial measurement units, microphones, speakers, and vibration sensors. Herein, we consider space-saving, noise reduction, and the ease of maintenance for designing the robot. The developed robot can communicate with all the attached sensors even if it is bent with a minimum bending radius of 250 mm. We also developed an operation interface that integrates search-support technologies using the information gathered via sensors. We demonstrated the survivor search procedure in a simulated rubble environment of the Fukushima Robot Test Field. We confirmed that the information provided through the operation interface is useful for searching and finding survivors. The limitations of the designed system are also discussed. The development of such a continuum robot system, with a great potential for several applications, extends the application of continuum robots to disaster management and will benefit the community at large.","PeriodicalId":37462,"journal":{"name":"ROBOMECH Journal","volume":"9 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ROBOMECH Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40648-022-00223-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 10
Abstract
Continuum robots can enter narrow spaces and are useful for search and rescue missions in disaster sites. The exploration efficiency at disaster sites improves if the robots can simultaneously acquire several pieces of information. However, a continuum robot that can simultaneously acquire information to such an extent has not yet been designed. This is because attaching multiple sensors to the robot without compromising its body flexibility is challenging. In this study, we installed multiple small sensors in a distributed manner to develop a continuum-robot system with multiple information-gathering functions. In addition, a field experiment with the robot demonstrated that the gathered multiple information has a potential to improve the searching efficiency. Concretely, we developed an active scope camera with sensory functions, which was equipped with a total of 80 distributed sensors, such as inertial measurement units, microphones, speakers, and vibration sensors. Herein, we consider space-saving, noise reduction, and the ease of maintenance for designing the robot. The developed robot can communicate with all the attached sensors even if it is bent with a minimum bending radius of 250 mm. We also developed an operation interface that integrates search-support technologies using the information gathered via sensors. We demonstrated the survivor search procedure in a simulated rubble environment of the Fukushima Robot Test Field. We confirmed that the information provided through the operation interface is useful for searching and finding survivors. The limitations of the designed system are also discussed. The development of such a continuum robot system, with a great potential for several applications, extends the application of continuum robots to disaster management and will benefit the community at large.
期刊介绍:
ROBOMECH Journal focuses on advanced technologies and practical applications in the field of Robotics and Mechatronics. This field is driven by the steadily growing research, development and consumer demand for robots and systems. Advanced robots have been working in medical and hazardous environments, such as space and the deep sea as well as in the manufacturing environment. The scope of the journal includes but is not limited to: 1. Modeling and design 2. System integration 3. Actuators and sensors 4. Intelligent control 5. Artificial intelligence 6. Machine learning 7. Robotics 8. Manufacturing 9. Motion control 10. Vibration and noise control 11. Micro/nano devices and optoelectronics systems 12. Automotive systems 13. Applications for extreme and/or hazardous environments 14. Other applications