{"title":"Detecting, Monitoring, and Analyzing the Surface Subsidence in the Yellow River Delta (China) Combined with CenterNet Network and SBAS-InSAR","authors":"Zhenjin Li, Zhiyong Wang, Wei Liu, Xing Li, Maotong Zhou, Baojing Zhang","doi":"10.1155/2022/2672876","DOIUrl":null,"url":null,"abstract":"Long-term industrial activities tend to cause surface subsidence and damage to ground facilities and local ecological environment. Monitoring and analyzing surface subsidence is of great significance to prevent potential disasters. The surface type of the Yellow River Delta in China is complex and there are many industrial activities, so it is necessary to monitor the surface subsidence in this area. Small Baseline Subset InSAR (SBAS-InSAR) can monitor the surface subsidence with millimeter-level accuracy, but it takes a long time to process wide images (Sentinel-1) and is seriously affected by atmospheric errors. To avoid these limitations, we constructed a method combining the CenterNet network and SBAS-InSAR (CNSBAS-InSAR). Firstly, the CenterNet network is used to automatically detect the subsidence areas from the wide differential interferogram formed by two SAR satellite images and determine the location of the subsidence area. Then, the SBAS-InSAR monitoring is performed on the detected multiple subsidence areas. Finally, the small-scale subsidence results are obtained. In this study, based on 24 Sentinel-1A satellite images acquired from 10 January 2018 to 24 December 2018, nine subsidence areas in Yellow River Delta were detected. Three of them had long-term surface subsidence. They were located in Zhanhua District, Xianhe Town, and Hongguang Village, respectively. This paper focuses on analyzing these three areas. The maximum subsidence rate of Zhanhua District, Xianhe Town, and Hongguang Village were −135.21 mm/a, −330.91 mm/a, and −209.68 mm/a, respectively. In addition, the analysis showed that precipitation in the Zhanhua District could effectively slow down the subsidence rate of the area. The subsidence of Xianhe Town threatened the safety of the Shugang Expressway. The subsidence of Hongguang Village caused the safety risks of buildings. The results of this study prove that CNSBAS-InSAR method is reliable for monitoring subsidence areas and it can provide a reference for local construction and protection of Yellow River Delta.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2022/2672876","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Long-term industrial activities tend to cause surface subsidence and damage to ground facilities and local ecological environment. Monitoring and analyzing surface subsidence is of great significance to prevent potential disasters. The surface type of the Yellow River Delta in China is complex and there are many industrial activities, so it is necessary to monitor the surface subsidence in this area. Small Baseline Subset InSAR (SBAS-InSAR) can monitor the surface subsidence with millimeter-level accuracy, but it takes a long time to process wide images (Sentinel-1) and is seriously affected by atmospheric errors. To avoid these limitations, we constructed a method combining the CenterNet network and SBAS-InSAR (CNSBAS-InSAR). Firstly, the CenterNet network is used to automatically detect the subsidence areas from the wide differential interferogram formed by two SAR satellite images and determine the location of the subsidence area. Then, the SBAS-InSAR monitoring is performed on the detected multiple subsidence areas. Finally, the small-scale subsidence results are obtained. In this study, based on 24 Sentinel-1A satellite images acquired from 10 January 2018 to 24 December 2018, nine subsidence areas in Yellow River Delta were detected. Three of them had long-term surface subsidence. They were located in Zhanhua District, Xianhe Town, and Hongguang Village, respectively. This paper focuses on analyzing these three areas. The maximum subsidence rate of Zhanhua District, Xianhe Town, and Hongguang Village were −135.21 mm/a, −330.91 mm/a, and −209.68 mm/a, respectively. In addition, the analysis showed that precipitation in the Zhanhua District could effectively slow down the subsidence rate of the area. The subsidence of Xianhe Town threatened the safety of the Shugang Expressway. The subsidence of Hongguang Village caused the safety risks of buildings. The results of this study prove that CNSBAS-InSAR method is reliable for monitoring subsidence areas and it can provide a reference for local construction and protection of Yellow River Delta.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.