{"title":"Analyzing the Contraction Force of Artificial Muscles Under Negative Pressure Actuation","authors":"Z. Wu, P. Zhao, J. Lei","doi":"10.1007/s40799-023-00686-6","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial muscles actuated by negative pressure offer significant benefits over those driven by positive pressure, such as high contraction ratios and improved safety, making them a promising option for various applications. This paper studies the contraction force characteristic of a bellows-like artificial muscle actuated by negative pressure. Initially, the structure, fabrication, and working principle of the artificial muscle were introduced. Subsequently, based on the force balance method, the contraction force was decomposed as the forces acted by the difference value of the inner and the outer pressures on the end plate, and the tension force derived from the adjacent contraction unit. To reduce complexity, the contraction process was divided into three phases according to the distinct contact conditions of the contraction units: uncontacted, locally contacted, and fully contacted with crests. The deformations of the contraction units in each phase were analyzed, and the corresponding contraction forces were derived. An experiment platform was constructed to test the force by changing the dimension parameters and pressure, obtaining the output force data during isobaric contraction. Finally, a comparison of the experimental and calculated results substantiated the aptness of the theorem model.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 4","pages":"693 - 707"},"PeriodicalIF":1.5000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Techniques","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40799-023-00686-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial muscles actuated by negative pressure offer significant benefits over those driven by positive pressure, such as high contraction ratios and improved safety, making them a promising option for various applications. This paper studies the contraction force characteristic of a bellows-like artificial muscle actuated by negative pressure. Initially, the structure, fabrication, and working principle of the artificial muscle were introduced. Subsequently, based on the force balance method, the contraction force was decomposed as the forces acted by the difference value of the inner and the outer pressures on the end plate, and the tension force derived from the adjacent contraction unit. To reduce complexity, the contraction process was divided into three phases according to the distinct contact conditions of the contraction units: uncontacted, locally contacted, and fully contacted with crests. The deformations of the contraction units in each phase were analyzed, and the corresponding contraction forces were derived. An experiment platform was constructed to test the force by changing the dimension parameters and pressure, obtaining the output force data during isobaric contraction. Finally, a comparison of the experimental and calculated results substantiated the aptness of the theorem model.
期刊介绍:
Experimental Techniques is a bimonthly interdisciplinary publication of the Society for Experimental Mechanics focusing on the development, application and tutorial of experimental mechanics techniques.
The purpose for Experimental Techniques is to promote pedagogical, technical and practical advancements in experimental mechanics while supporting the Society''s mission and commitment to interdisciplinary application, research and development, education, and active promotion of experimental methods to:
- Increase the knowledge of physical phenomena
- Further the understanding of the behavior of materials, structures, and systems
- Provide the necessary physical observations necessary to improve and assess new analytical and computational approaches.