{"title":"The linear stability of plane Couette flow with a compliant boundary","authors":"Andrew Walton, Keming Yu","doi":"10.1007/s10665-023-10307-1","DOIUrl":null,"url":null,"abstract":"<p>The linear stability of plane Couette flow subject to one rigid boundary and one flexible boundary is considered at both finite and asymptotically large Reynolds number. The wall flexibility is modelled using a very simple Hooke-type law involving a spring constant <i>K</i> and is incorporated into a boundary condition on the appropriate Orr–Sommerfeld eigenvalue problem. This problem is analyzed at large Reynolds number by the method of matched asymptotic expansions and eigenrelations are derived that demonstrate the existence of neutral modes at finite spring stiffness, propagating with speeds close to that of the rigid wall and possessing wavelengths comparable to the channel width. A large critical value of <i>K</i> is identified at which a new short wavelength asymptotic structure comes into play that describes the entirety of the linear neutral curve. The asymptotic theories compare well with finite Reynolds number Orr–Sommerfeld calculations and demonstrate that only the tiniest amount of wall flexibility is required to destabilize the flow, with the linear neutral curve for the instability emerging as a bifurcation from infinity.</p>","PeriodicalId":50204,"journal":{"name":"Journal of Engineering Mathematics","volume":"21 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-023-10307-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The linear stability of plane Couette flow subject to one rigid boundary and one flexible boundary is considered at both finite and asymptotically large Reynolds number. The wall flexibility is modelled using a very simple Hooke-type law involving a spring constant K and is incorporated into a boundary condition on the appropriate Orr–Sommerfeld eigenvalue problem. This problem is analyzed at large Reynolds number by the method of matched asymptotic expansions and eigenrelations are derived that demonstrate the existence of neutral modes at finite spring stiffness, propagating with speeds close to that of the rigid wall and possessing wavelengths comparable to the channel width. A large critical value of K is identified at which a new short wavelength asymptotic structure comes into play that describes the entirety of the linear neutral curve. The asymptotic theories compare well with finite Reynolds number Orr–Sommerfeld calculations and demonstrate that only the tiniest amount of wall flexibility is required to destabilize the flow, with the linear neutral curve for the instability emerging as a bifurcation from infinity.
期刊介绍:
The aim of this journal is to promote the application of mathematics to problems from engineering and the applied sciences. It also aims to emphasize the intrinsic unity, through mathematics, of the fundamental problems of applied and engineering science. The scope of the journal includes the following:
• Mathematics: Ordinary and partial differential equations, Integral equations, Asymptotics, Variational and functional−analytic methods, Numerical analysis, Computational methods.
• Applied Fields: Continuum mechanics, Stability theory, Wave propagation, Diffusion, Heat and mass transfer, Free−boundary problems; Fluid mechanics: Aero− and hydrodynamics, Boundary layers, Shock waves, Fluid machinery, Fluid−structure interactions, Convection, Combustion, Acoustics, Multi−phase flows, Transition and turbulence, Creeping flow, Rheology, Porous−media flows, Ocean engineering, Atmospheric engineering, Non-Newtonian flows, Ship hydrodynamics; Solid mechanics: Elasticity, Classical mechanics, Nonlinear mechanics, Vibrations, Plates and shells, Fracture mechanics; Biomedical engineering, Geophysical engineering, Reaction−diffusion problems; and related areas.
The Journal also publishes occasional invited ''Perspectives'' articles by distinguished researchers reviewing and bringing their authoritative overview to recent developments in topics of current interest in their area of expertise. Authors wishing to suggest topics for such articles should contact the Editors-in-Chief directly.
Prospective authors are encouraged to consult recent issues of the journal in order to judge whether or not their manuscript is consistent with the style and content of published papers.