Establishment of iterative modeling method for spherical tensegrity structure using rotational symmetry and regular polyhedron configuration

IF 1.9 4区 工程技术 Q3 MECHANICS Mechanics Research Communications Pub Date : 2024-01-01 DOI:10.1016/j.mechrescom.2023.104217
Erina Mori , Yuta Matsumoto , Nariyuki Kawabata , Keisuke Otsuka , Kanjuro Makihara
{"title":"Establishment of iterative modeling method for spherical tensegrity structure using rotational symmetry and regular polyhedron configuration","authors":"Erina Mori ,&nbsp;Yuta Matsumoto ,&nbsp;Nariyuki Kawabata ,&nbsp;Keisuke Otsuka ,&nbsp;Kanjuro Makihara","doi":"10.1016/j.mechrescom.2023.104217","DOIUrl":null,"url":null,"abstract":"<div><p>Tensegrity structures are attractive light-weight structures. In particular, spherical tensegrity structures are expected to be applied in various fields. This article proposes a simple method for modeling spherical tensegrities. Firstly, the nodal coordinates of the spherical tensegrity are systematically determined based on rotational symmetry and regular polyhedral configuration. This approach enables the systematic acquisition of the nodal coordinates of spherical tensegrities of all sizes by introducing a three-dimensional rotation matrix and the dihedral angle of the regular polyhedron. Secondly, the prestress ratio is determined iteratively. For the stability analysis of the spherical tensegrity, nonlinear analysis with prestress is required. For the analysis considering the prestress, a tangent stiffness matrix is applied in this study. The simple determination method enables the modeling of spherical tensegrities. The natural frequencies and mode shapes of the spherical tensegrity are identified by frequency analysis. A vibration experiment is conducted as a verification experiment. The natural frequencies from the analysis are compared to the resonance frequencies from the experiment. This comparison confirms the validity of the frequency analysis results, based on the two proposed methods.</p></div>","PeriodicalId":49846,"journal":{"name":"Mechanics Research Communications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0093641323001763/pdfft?md5=75f79db6d00d0f9603eaebc6b067366e&pid=1-s2.0-S0093641323001763-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics Research Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093641323001763","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Tensegrity structures are attractive light-weight structures. In particular, spherical tensegrity structures are expected to be applied in various fields. This article proposes a simple method for modeling spherical tensegrities. Firstly, the nodal coordinates of the spherical tensegrity are systematically determined based on rotational symmetry and regular polyhedral configuration. This approach enables the systematic acquisition of the nodal coordinates of spherical tensegrities of all sizes by introducing a three-dimensional rotation matrix and the dihedral angle of the regular polyhedron. Secondly, the prestress ratio is determined iteratively. For the stability analysis of the spherical tensegrity, nonlinear analysis with prestress is required. For the analysis considering the prestress, a tangent stiffness matrix is applied in this study. The simple determination method enables the modeling of spherical tensegrities. The natural frequencies and mode shapes of the spherical tensegrity are identified by frequency analysis. A vibration experiment is conducted as a verification experiment. The natural frequencies from the analysis are compared to the resonance frequencies from the experiment. This comparison confirms the validity of the frequency analysis results, based on the two proposed methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于旋转对称和正多面体构型的球面张拉整体结构迭代建模方法的建立
张拉整体结构是一种极具吸引力的轻型结构。尤其是球面张拉整体结构,其应用前景十分广阔。本文提出了一种简单的球面张拉整体体建模方法。首先,基于旋转对称和正多面体结构,系统地确定了球面张拉整体的节点坐标;该方法通过引入三维旋转矩阵和正多面体的二面角,可以系统地获取各种尺寸的球面张拉整体的节点坐标。其次,迭代确定预应力比;对于球面张拉整体结构的稳定性分析,需要进行带预应力的非线性分析。对于考虑预应力的分析,本文采用了切线刚度矩阵。简单的确定方法使球面张拉整体的建模成为可能。通过频率分析,确定了球面张拉整体的固有频率和振型。进行了振动实验作为验证实验。将分析得到的固有频率与实验得到的共振频率进行了比较。通过比较,验证了基于两种方法的频率分析结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
4.20%
发文量
114
审稿时长
9 months
期刊介绍: Mechanics Research Communications publishes, as rapidly as possible, peer-reviewed manuscripts of high standards but restricted length. It aims to provide: • a fast means of communication • an exchange of ideas among workers in mechanics • an effective method of bringing new results quickly to the public • an informal vehicle for the discussion • of ideas that may still be in the formative stages The field of Mechanics will be understood to encompass the behavior of continua, fluids, solids, particles and their mixtures. Submissions must contain a strong, novel contribution to the field of mechanics, and ideally should be focused on current issues in the field involving theoretical, experimental and/or applied research, preferably within the broad expertise encompassed by the Board of Associate Editors. Deviations from these areas should be discussed in advance with the Editor-in-Chief.
期刊最新文献
The implementation of M-integral in cross-scale correlation analysis of porous materials Editorial Board Vibration response of sandwich plate reinforced by GPLs/GOAM Ratcheting assessment of additively manufactured SS316 alloys at elevated temperatures within the dynamic strain aging domain Development of a methodology for prediction and calibration of parameters of DEM simulations based on machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1