Lei Yang, Qian Dai, Xiaoming Bao, Wang Li, Jie Liu
{"title":"MiR-4763-3p accelerates lipopolysaccharide-induced cardiomyocyte apoptosis and inflammatory response by targeting IL10RA","authors":"Lei Yang, Qian Dai, Xiaoming Bao, Wang Li, Jie Liu","doi":"10.1007/s10616-023-00607-w","DOIUrl":null,"url":null,"abstract":"<p>In order to investigate miR-4763-3p and associated genes’ roles in myocarditis, AC16 cell line was divided into LPS + miR-4763-3p inhibitor, LPS + NC inhibitor, LPS + miR-4763-3p inhibitor + si-IL10RA and NC groups, and Q-PCR was used to find out whether miR-4763-3p was expressed; Targetscan, Genecards, and MiRDB were used to estimate the miR-4763-3p target; Targetscan was used to display binding sites. Western blot assay was undertaken to detect Bax, Bcl-2, and IL10RA expression. Proliferation and apoptosis were processed using CCK8 and the flow cytometry assay, respectively. Migration and invasion were confirmed utilizing Transwell test. ELISA assay was processed to show the content of IL-6, IL-1ß, IL-10 and TGF-ß in the cell culture supernatant. After being exposed to LPS, cardiomyocyte cells expressed more miR-4763-3p. MiR-4763-3p inhibitor accelerated proliferation, migration and invasion behavior, while it also decreased apoptosis rate in LPS-treated cardiomyocyte cells. MiR-4763-3p inhibitor attenuated the inflammatory response by up-regulating Bax expression and down-regulating Bcl-2 level in LPS-treated cardiomyocyte cells. In cardiomyocyte cells treated with LPS, MiR-4763-3p expression was elevated. si-IL10RA The miR-4763-3p inhibitor restored its effects. MiR-4763-3p accelerates lipopolysaccharide-induced cardiomyocyte apoptosis and inflammatory response by targeting IL10RA, which might be a potential target for myocarditis.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-023-00607-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In order to investigate miR-4763-3p and associated genes’ roles in myocarditis, AC16 cell line was divided into LPS + miR-4763-3p inhibitor, LPS + NC inhibitor, LPS + miR-4763-3p inhibitor + si-IL10RA and NC groups, and Q-PCR was used to find out whether miR-4763-3p was expressed; Targetscan, Genecards, and MiRDB were used to estimate the miR-4763-3p target; Targetscan was used to display binding sites. Western blot assay was undertaken to detect Bax, Bcl-2, and IL10RA expression. Proliferation and apoptosis were processed using CCK8 and the flow cytometry assay, respectively. Migration and invasion were confirmed utilizing Transwell test. ELISA assay was processed to show the content of IL-6, IL-1ß, IL-10 and TGF-ß in the cell culture supernatant. After being exposed to LPS, cardiomyocyte cells expressed more miR-4763-3p. MiR-4763-3p inhibitor accelerated proliferation, migration and invasion behavior, while it also decreased apoptosis rate in LPS-treated cardiomyocyte cells. MiR-4763-3p inhibitor attenuated the inflammatory response by up-regulating Bax expression and down-regulating Bcl-2 level in LPS-treated cardiomyocyte cells. In cardiomyocyte cells treated with LPS, MiR-4763-3p expression was elevated. si-IL10RA The miR-4763-3p inhibitor restored its effects. MiR-4763-3p accelerates lipopolysaccharide-induced cardiomyocyte apoptosis and inflammatory response by targeting IL10RA, which might be a potential target for myocarditis.