Antoine Amarilli, Pierre Bourhis, Stefan Mengel, Matthias Niewerth
{"title":"Constant-Delay Enumeration for Nondeterministic Document Spanners","authors":"Antoine Amarilli, Pierre Bourhis, Stefan Mengel, Matthias Niewerth","doi":"10.1145/3436487","DOIUrl":null,"url":null,"abstract":"We consider the information extraction framework known as <jats:italic>document spanners</jats:italic> and study the problem of efficiently computing the results of the extraction from an input document, where the extraction task is described as a sequential <jats:italic>variable-set automaton</jats:italic> (VA). We pose this problem in the setting of enumeration algorithms, where we can first run a preprocessing phase and must then produce the results with a small delay between any two consecutive results. Our goal is to have an algorithm that is tractable in combined complexity, i.e., in the sizes of the input document and the VA, while ensuring the best possible data complexity bounds in the input document size, i.e., constant delay in the document size. Several recent works at PODS’18 proposed such algorithms but with linear delay in the document size or with an exponential dependency in size of the (generally nondeterministic) input VA. In particular, Florenzano et al. suggest that our desired runtime guarantees cannot be met for general sequential VAs. We refute this and show that, given a nondeterministic sequential VA and an input document, we can enumerate the mappings of the VA on the document with the following bounds: the preprocessing is linear in the document size and polynomial in the size of the VA, and the delay is independent of the document and polynomial in the size of the VA. The resulting algorithm thus achieves tractability in combined complexity and the best possible data complexity bounds. Moreover, it is rather easy to describe, particularly for the restricted case of so-called extended VAs. Finally, we evaluate our algorithm empirically using a prototype implementation.","PeriodicalId":50915,"journal":{"name":"ACM Transactions on Database Systems","volume":"22 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Database Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3436487","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the information extraction framework known as document spanners and study the problem of efficiently computing the results of the extraction from an input document, where the extraction task is described as a sequential variable-set automaton (VA). We pose this problem in the setting of enumeration algorithms, where we can first run a preprocessing phase and must then produce the results with a small delay between any two consecutive results. Our goal is to have an algorithm that is tractable in combined complexity, i.e., in the sizes of the input document and the VA, while ensuring the best possible data complexity bounds in the input document size, i.e., constant delay in the document size. Several recent works at PODS’18 proposed such algorithms but with linear delay in the document size or with an exponential dependency in size of the (generally nondeterministic) input VA. In particular, Florenzano et al. suggest that our desired runtime guarantees cannot be met for general sequential VAs. We refute this and show that, given a nondeterministic sequential VA and an input document, we can enumerate the mappings of the VA on the document with the following bounds: the preprocessing is linear in the document size and polynomial in the size of the VA, and the delay is independent of the document and polynomial in the size of the VA. The resulting algorithm thus achieves tractability in combined complexity and the best possible data complexity bounds. Moreover, it is rather easy to describe, particularly for the restricted case of so-called extended VAs. Finally, we evaluate our algorithm empirically using a prototype implementation.
期刊介绍:
Heavily used in both academic and corporate R&D settings, ACM Transactions on Database Systems (TODS) is a key publication for computer scientists working in data abstraction, data modeling, and designing data management systems. Topics include storage and retrieval, transaction management, distributed and federated databases, semantics of data, intelligent databases, and operations and algorithms relating to these areas. In this rapidly changing field, TODS provides insights into the thoughts of the best minds in database R&D.