{"title":"Efficiently Cleaning Structured Event Logs: A Graph Repair Approach","authors":"Ruihong Huang, Jianmin Wang, Shaoxu Song, Xuemin Lin, Xiaochen Zhu, Jian Pei","doi":"https://dl.acm.org/doi/10.1145/3571281","DOIUrl":null,"url":null,"abstract":"<p>Event data are often dirty owing to various recording conventions or simply system errors. These errors may cause serious damage to real applications, such as inaccurate provenance answers, poor profiling results, or concealing interesting patterns from event data. Cleaning dirty event data is strongly demanded. While existing event data cleaning techniques view event logs as sequences, structural information does exist among events, such as the task passing relationships between staffs in workflow or the invocation relationships among different micro-services in monitoring application performance. We argue that such structural information enhances not only the accuracy of repairing inconsistent events but also the computation efficiency. It is notable that both the structure and the names (labeling) of events could be inconsistent. In real applications, while an unsound structure is not repaired automatically (which requires manual effort from business actors to handle the structure error), it is highly desirable to repair the inconsistent event names introduced by recording mistakes. In this article, we first prove that the inconsistent label repairing problem is NP-complete. Then, we propose a graph repair approach for (1) detecting unsound structures, and (2) repairing inconsistent event names. Efficient pruning techniques together with two heuristic solutions are also presented. Extensive experiments over real and synthetic datasets demonstrate both the effectiveness and efficiency of our proposal.</p>","PeriodicalId":50915,"journal":{"name":"ACM Transactions on Database Systems","volume":"26 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Database Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3571281","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Event data are often dirty owing to various recording conventions or simply system errors. These errors may cause serious damage to real applications, such as inaccurate provenance answers, poor profiling results, or concealing interesting patterns from event data. Cleaning dirty event data is strongly demanded. While existing event data cleaning techniques view event logs as sequences, structural information does exist among events, such as the task passing relationships between staffs in workflow or the invocation relationships among different micro-services in monitoring application performance. We argue that such structural information enhances not only the accuracy of repairing inconsistent events but also the computation efficiency. It is notable that both the structure and the names (labeling) of events could be inconsistent. In real applications, while an unsound structure is not repaired automatically (which requires manual effort from business actors to handle the structure error), it is highly desirable to repair the inconsistent event names introduced by recording mistakes. In this article, we first prove that the inconsistent label repairing problem is NP-complete. Then, we propose a graph repair approach for (1) detecting unsound structures, and (2) repairing inconsistent event names. Efficient pruning techniques together with two heuristic solutions are also presented. Extensive experiments over real and synthetic datasets demonstrate both the effectiveness and efficiency of our proposal.
期刊介绍:
Heavily used in both academic and corporate R&D settings, ACM Transactions on Database Systems (TODS) is a key publication for computer scientists working in data abstraction, data modeling, and designing data management systems. Topics include storage and retrieval, transaction management, distributed and federated databases, semantics of data, intelligent databases, and operations and algorithms relating to these areas. In this rapidly changing field, TODS provides insights into the thoughts of the best minds in database R&D.