{"title":"Heat transfer enhancement of a new single phase hybrid cooling scheme of micro-channel and jet impingement","authors":"Yuming Guo, Liangliang Fan, Liang Zhao","doi":"10.1615/jenhheattransf.2022041672","DOIUrl":null,"url":null,"abstract":"With the increase of power density of electronic components, in order to prolong the lifetime, to develop the cooling schemes with high heat dissipation performance has attracted much attention. The hybrid cooling schemes, combing the merits of micro-channel and micro-jet have been widely studied in the past decades. However, there is no good solution to the dilemma of stagnation zone caused by multi jet which weakens the heat dissipation performance of cooling schemes. In this study, a new hybrid cooling scheme was proposed, introducing coolant by micro-channel to attenuate the stagnation zone, to improve heat transfer performance and heat flux of single-phase reached 233W/cm2. A test module was constructed and tested using the deionized water as the coolant. A superposition technique was developed further, which now could correlate the single-phase heat transfer data for a new hybrid cooling scheme successfully, with all data falling within 95% confidence band. These findings have an impact on the further development of efficient cooling technology.","PeriodicalId":50208,"journal":{"name":"Journal of Enhanced Heat Transfer","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enhanced Heat Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/jenhheattransf.2022041672","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the increase of power density of electronic components, in order to prolong the lifetime, to develop the cooling schemes with high heat dissipation performance has attracted much attention. The hybrid cooling schemes, combing the merits of micro-channel and micro-jet have been widely studied in the past decades. However, there is no good solution to the dilemma of stagnation zone caused by multi jet which weakens the heat dissipation performance of cooling schemes. In this study, a new hybrid cooling scheme was proposed, introducing coolant by micro-channel to attenuate the stagnation zone, to improve heat transfer performance and heat flux of single-phase reached 233W/cm2. A test module was constructed and tested using the deionized water as the coolant. A superposition technique was developed further, which now could correlate the single-phase heat transfer data for a new hybrid cooling scheme successfully, with all data falling within 95% confidence band. These findings have an impact on the further development of efficient cooling technology.
期刊介绍:
The Journal of Enhanced Heat Transfer will consider a wide range of scholarly papers related to the subject of "enhanced heat and mass transfer" in natural and forced convection of liquids and gases, boiling, condensation, radiative heat transfer.
Areas of interest include:
■Specially configured surface geometries, electric or magnetic fields, and fluid additives - all aimed at enhancing heat transfer rates. Papers may include theoretical modeling, experimental techniques, experimental data, and/or application of enhanced heat transfer technology.
■The general topic of "high performance" heat transfer concepts or systems is also encouraged.