{"title":"DYNAMIC PROBABILISTIC FORECASTING WITH UNCERTAINTY","authors":"FRED ESPEN BENTH, GLEDA KUTROLLI, SILVANA STEFANI","doi":"10.1142/s0219024921500345","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a dynamical model for the time evolution of probability density functions incorporating uncertainty in the parameters. The uncertainty follows stochastic processes, thereby defining a new class of stochastic processes with values in the space of probability densities. The purpose is to quantify uncertainty that can be used for probabilistic forecasting. Starting from a set of traded prices of equity indices, we do some empirical studies. We apply our dynamic probabilistic forecasting to option pricing, where our proposed notion of model uncertainty reduces to uncertainty on future volatility. A distribution of option prices follows, reflecting the uncertainty on the distribution of the underlying prices. We associate measures of model uncertainty of prices in the sense of Cont.","PeriodicalId":47022,"journal":{"name":"International Journal of Theoretical and Applied Finance","volume":"28 3 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical and Applied Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219024921500345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we introduce a dynamical model for the time evolution of probability density functions incorporating uncertainty in the parameters. The uncertainty follows stochastic processes, thereby defining a new class of stochastic processes with values in the space of probability densities. The purpose is to quantify uncertainty that can be used for probabilistic forecasting. Starting from a set of traded prices of equity indices, we do some empirical studies. We apply our dynamic probabilistic forecasting to option pricing, where our proposed notion of model uncertainty reduces to uncertainty on future volatility. A distribution of option prices follows, reflecting the uncertainty on the distribution of the underlying prices. We associate measures of model uncertainty of prices in the sense of Cont.
期刊介绍:
The shift of the financial market towards the general use of advanced mathematical methods has led to the introduction of state-of-the-art quantitative tools into the world of finance. The International Journal of Theoretical and Applied Finance (IJTAF) brings together international experts involved in the mathematical modelling of financial instruments as well as the application of these models to global financial markets. The development of complex financial products has led to new challenges to the regulatory bodies. Financial instruments that have been designed to serve the needs of the mature capitals market need to be adapted for application in the emerging markets.