Joshua Dorrington, Christian Grams, Federico Grazzini, Linus Magnusson, Frederic Vitart
{"title":"Domino: A new framework for the automated identification of weather event precursors, demonstrated for European extreme rainfall","authors":"Joshua Dorrington, Christian Grams, Federico Grazzini, Linus Magnusson, Frederic Vitart","doi":"10.1002/qj.4622","DOIUrl":null,"url":null,"abstract":"A number of studies have investigated the large-scale drivers and upstream-precursors of extreme weather events, making it clear that the earliest warning signs of extreme events can be remote in both time and space from the impacted region. Integrating and leveraging our understanding of dynamical precursors provides a new perspective on ensemble forecasting for extreme events, focused on building story-lines of possible event evolution. This then acts as a tool for raising awareness of the conditions conducive to high-impact weather, and providing early warning of their possible development. However, operational applications of this developing knowledge-base are limited, perhaps for want of a clear framework for doing so. Here, we present such a framework, supported by open software tools, designed for identifying large-scale precursors of categorical weather events in an automated fashion, and for reducing them to scalar indices suitable for statistical prediction, forecast interpretation, and model validation. We demonstrate this framework by systematically analysing the precursor circulations of daily rainfall extremes across 18 regional- to national-scale European domains. We discuss the precursor rainfall dynamics for three disparate regions, and show our findings are consistent with, and extend, previous work. We provide an estimate of the predictive utility of these precursors across Europe based on logistic regression, and show that large-scale precursors can usefully predict heavy rainfall between two and six days ahead, depending on region and season. We further show how for more continental-scale applications the regionally-specific precursors can be synthesised into a minimal set of indices that drive heavy precipitation. We then provide comments and guidance for generalisation and application of our demonstrated approach to new variables, timescales and regions.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":"281 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4622","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A number of studies have investigated the large-scale drivers and upstream-precursors of extreme weather events, making it clear that the earliest warning signs of extreme events can be remote in both time and space from the impacted region. Integrating and leveraging our understanding of dynamical precursors provides a new perspective on ensemble forecasting for extreme events, focused on building story-lines of possible event evolution. This then acts as a tool for raising awareness of the conditions conducive to high-impact weather, and providing early warning of their possible development. However, operational applications of this developing knowledge-base are limited, perhaps for want of a clear framework for doing so. Here, we present such a framework, supported by open software tools, designed for identifying large-scale precursors of categorical weather events in an automated fashion, and for reducing them to scalar indices suitable for statistical prediction, forecast interpretation, and model validation. We demonstrate this framework by systematically analysing the precursor circulations of daily rainfall extremes across 18 regional- to national-scale European domains. We discuss the precursor rainfall dynamics for three disparate regions, and show our findings are consistent with, and extend, previous work. We provide an estimate of the predictive utility of these precursors across Europe based on logistic regression, and show that large-scale precursors can usefully predict heavy rainfall between two and six days ahead, depending on region and season. We further show how for more continental-scale applications the regionally-specific precursors can be synthesised into a minimal set of indices that drive heavy precipitation. We then provide comments and guidance for generalisation and application of our demonstrated approach to new variables, timescales and regions.
期刊介绍:
The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues.
The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.