Surface-guided computing to analyze subcellular morphology and membrane-associated signals in 3D

Felix Y. Zhou, Andrew Weems, Gabriel M. Gihana, Bingying Chen, Bo-Jui Chang, Meghan Driscoll, Gaudenz Danuser
{"title":"Surface-guided computing to analyze subcellular morphology and membrane-associated signals in 3D","authors":"Felix Y. Zhou, Andrew Weems, Gabriel M. Gihana, Bingying Chen, Bo-Jui Chang, Meghan Driscoll, Gaudenz Danuser","doi":"arxiv-2304.06176","DOIUrl":null,"url":null,"abstract":"Signal transduction and cell function are governed by the spatiotemporal\norganization of membrane-associated molecules. Despite significant advances in\nvisualizing molecular distributions by 3D light microscopy, cell biologists\nstill have limited quantitative understanding of the processes implicated in\nthe regulation of molecular signals at the whole cell scale. In particular,\ncomplex and transient cell surface morphologies challenge the complete sampling\nof cell geometry, membrane-associated molecular concentration and activity and\nthe computing of meaningful parameters such as the cofluctuation between\nmorphology and signals. Here, we introduce u-Unwrap3D, a framework to remap\narbitrarily complex 3D cell surfaces and membrane-associated signals into\nequivalent lower dimensional representations. The mappings are bidirectional,\nallowing the application of image processing operations in the data\nrepresentation best suited for the task and to subsequently present the results\nin any of the other representations, including the original 3D cell surface.\nLeveraging this surface-guided computing paradigm, we track segmented surface\nmotifs in 2D to quantify the recruitment of Septin polymers by blebbing events;\nwe quantify actin enrichment in peripheral ruffles; and we measure the speed of\nruffle movement along topographically complex cell surfaces. Thus, u-Unwrap3D\nprovides access to spatiotemporal analyses of cell biological parameters on\nunconstrained 3D surface geometries and signals.","PeriodicalId":501170,"journal":{"name":"arXiv - QuanBio - Subcellular Processes","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Subcellular Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2304.06176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Signal transduction and cell function are governed by the spatiotemporal organization of membrane-associated molecules. Despite significant advances in visualizing molecular distributions by 3D light microscopy, cell biologists still have limited quantitative understanding of the processes implicated in the regulation of molecular signals at the whole cell scale. In particular, complex and transient cell surface morphologies challenge the complete sampling of cell geometry, membrane-associated molecular concentration and activity and the computing of meaningful parameters such as the cofluctuation between morphology and signals. Here, we introduce u-Unwrap3D, a framework to remap arbitrarily complex 3D cell surfaces and membrane-associated signals into equivalent lower dimensional representations. The mappings are bidirectional, allowing the application of image processing operations in the data representation best suited for the task and to subsequently present the results in any of the other representations, including the original 3D cell surface. Leveraging this surface-guided computing paradigm, we track segmented surface motifs in 2D to quantify the recruitment of Septin polymers by blebbing events; we quantify actin enrichment in peripheral ruffles; and we measure the speed of ruffle movement along topographically complex cell surfaces. Thus, u-Unwrap3D provides access to spatiotemporal analyses of cell biological parameters on unconstrained 3D surface geometries and signals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
表面引导计算分析三维亚细胞形态和膜相关信号
信号转导和细胞功能是由膜相关分子的时空组织控制的。尽管通过3D光学显微镜观察分子分布取得了重大进展,但细胞生物学家对整个细胞尺度上的分子信号调控过程的定量理解仍然有限。特别是,复杂和瞬态的细胞表面形态对细胞几何、膜相关分子浓度和活性的完整采样以及形态学和信号之间的共涨落等有意义参数的计算提出了挑战。在这里,我们介绍u-Unwrap3D,这是一个框架,可以将任意复杂的3D细胞表面和膜相关信号转换为等效的低维表示。映射是双向的,允许在最适合任务的数据表示中应用图像处理操作,并随后将结果呈现在任何其他表示中,包括原始的3D细胞表面。利用这种表面导向的计算范式,我们在2D中跟踪分段的表面特征,通过起泡事件量化Septin聚合物的招募;我们还测量了褶皱沿着地形复杂的细胞表面运动的速度。因此,u- unwrap3d提供了对不受约束的三维表面几何形状和信号的细胞生物学参数的时空分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Causal loop and Stock-Flow Modeling of Signal Transduction Pathways Transient contacts between filaments impart its elasticity to branched actin Ultra-rapid, Quantitative, Label-free Antibiotic Susceptibility Testing via Optically Detected Purine Metabolites Intracellular order formation through stepwise phase transitions A Novel Use of Pseudospectra in Mathematical Biology: Understanding HPA Axis Sensitivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1