A Fully Quantum Algorithm for Hydrodynamic Lattice Gas Cellular Automata

Niccolo Fonio, Pierre Sagaut, Giuseppe Di Molfetta
{"title":"A Fully Quantum Algorithm for Hydrodynamic Lattice Gas Cellular Automata","authors":"Niccolo Fonio, Pierre Sagaut, Giuseppe Di Molfetta","doi":"arxiv-2310.07362","DOIUrl":null,"url":null,"abstract":"Lattice Gas Cellular Automata (LGCA) are a computational model widely known\nand applied for the simulation of many physical phenomena. Their implementation\nrequires an amount of resources and operations which scale linearly versus the\nsystem size and number of time steps. We propose a quantum-pointers-based\nquantum algorithm able to simulate LGCA while exhibiting an exponential\nadvantage in space complexity and a number of quantum operations independent\nfrom the system size. We propose a collision circuit for the FHP lattice-gas\nautomata considering the 2-, 3-, and 4-body collisions. These are implemented\nwith two methodologies that suggest the procedure for finding quantum circuits\nfor LGCA with more collisions. We also propose a phase estimation algorithm to\nretrieve information about a single cell, whose application can be expanded for\nimplementing other collisions. A general methodology to identify the invariants\nassociated to quantum LGCA is also proposed.","PeriodicalId":501231,"journal":{"name":"arXiv - PHYS - Cellular Automata and Lattice Gases","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cellular Automata and Lattice Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2310.07362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lattice Gas Cellular Automata (LGCA) are a computational model widely known and applied for the simulation of many physical phenomena. Their implementation requires an amount of resources and operations which scale linearly versus the system size and number of time steps. We propose a quantum-pointers-based quantum algorithm able to simulate LGCA while exhibiting an exponential advantage in space complexity and a number of quantum operations independent from the system size. We propose a collision circuit for the FHP lattice-gas automata considering the 2-, 3-, and 4-body collisions. These are implemented with two methodologies that suggest the procedure for finding quantum circuits for LGCA with more collisions. We also propose a phase estimation algorithm to retrieve information about a single cell, whose application can be expanded for implementing other collisions. A general methodology to identify the invariants associated to quantum LGCA is also proposed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
流体动力点阵气体元胞自动机的全量子算法
晶格气体元胞自动机(LGCA)是一种广为人知的计算模型,可用于模拟许多物理现象。它们的实现需要大量的资源和操作,这些资源和操作与系统大小和时间步数呈线性关系。我们提出了一种基于量子指针的量子算法,能够模拟LGCA,同时在空间复杂性和一些独立于系统大小的量子操作方面表现出指数优势。我们提出了一种考虑二体、三体和四体碰撞的FHP栅格自动机的碰撞电路。这些是用两种方法实现的,这两种方法建议了寻找具有更多碰撞的LGCA量子电路的过程。我们还提出了一种相位估计算法来检索单个细胞的信息,该算法的应用可以扩展到实现其他碰撞。提出了一种识别与量子LGCA相关的不变量的一般方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Networks of Binary Necklaces Induced by Elementary Cellular Automata Rules Convolutional Neural Networks for Automated Cellular Automaton Classification Efficient Simulation of Non-uniform Cellular Automata with a Convolutional Neural Network Block approximations for probabilistic mixtures of elementary cellular automata Complete ergodicity in one-dimensional reversible cellar automata
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1