Boolean Networks as Predictive Models of Emergent Biological Behaviors

Jordan C. Rozum, Colin Campbell, Eli Newby, Fatemeh Sadat Fatemi Nasrollahi, Reka Albert
{"title":"Boolean Networks as Predictive Models of Emergent Biological Behaviors","authors":"Jordan C. Rozum, Colin Campbell, Eli Newby, Fatemeh Sadat Fatemi Nasrollahi, Reka Albert","doi":"arxiv-2310.12901","DOIUrl":null,"url":null,"abstract":"Interacting biological systems at all organizational levels display emergent\nbehavior. Modeling these systems is made challenging by the number and variety\nof biological components and interactions (from molecules in gene regulatory\nnetworks to species in ecological networks) and the often-incomplete state of\nsystem knowledge (e.g., the unknown values of kinetic parameters for\nbiochemical reactions). Boolean networks have emerged as a powerful tool for\nmodeling these systems. We provide a methodological overview of Boolean network\nmodels of biological systems. After a brief introduction, we describe the\nprocess of building, analyzing, and validating a Boolean model. We then present\nthe use of the model to make predictions about the system's response to\nperturbations and about how to control (or at least influence) its behavior. We\nemphasize the interplay between structural and dynamical properties of Boolean\nnetworks and illustrate them in three case studies from disparate levels of\nbiological organization.","PeriodicalId":501231,"journal":{"name":"arXiv - PHYS - Cellular Automata and Lattice Gases","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cellular Automata and Lattice Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2310.12901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Interacting biological systems at all organizational levels display emergent behavior. Modeling these systems is made challenging by the number and variety of biological components and interactions (from molecules in gene regulatory networks to species in ecological networks) and the often-incomplete state of system knowledge (e.g., the unknown values of kinetic parameters for biochemical reactions). Boolean networks have emerged as a powerful tool for modeling these systems. We provide a methodological overview of Boolean network models of biological systems. After a brief introduction, we describe the process of building, analyzing, and validating a Boolean model. We then present the use of the model to make predictions about the system's response to perturbations and about how to control (or at least influence) its behavior. We emphasize the interplay between structural and dynamical properties of Boolean networks and illustrate them in three case studies from disparate levels of biological organization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
布尔网络作为紧急生物行为的预测模型
在所有组织层次上相互作用的生物系统都表现出紧急行为。由于生物成分和相互作用的数量和种类(从基因调节网络中的分子到生态网络中的物种)以及系统知识通常不完整的状态(例如,生化反应的动力学参数的未知值),对这些系统进行建模具有挑战性。布尔网络已经成为这些系统建模的强大工具。我们提供了生物系统的布尔网络模型的方法论概述。在简短的介绍之后,我们描述了构建、分析和验证布尔模型的过程。然后,我们介绍了使用该模型来预测系统对扰动的响应以及如何控制(或至少影响)其行为。我们强调布尔网络的结构和动态特性之间的相互作用,并从不同层次的生物组织的三个案例研究说明它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Networks of Binary Necklaces Induced by Elementary Cellular Automata Rules Convolutional Neural Networks for Automated Cellular Automaton Classification Efficient Simulation of Non-uniform Cellular Automata with a Convolutional Neural Network Block approximations for probabilistic mixtures of elementary cellular automata Complete ergodicity in one-dimensional reversible cellar automata
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1