{"title":"Solubility Data of Eight Common Alloying Elements in Magnesium","authors":"Chuangye Wang, Wei Zhong, Ji-Cheng Zhao","doi":"10.1007/s11669-023-01077-5","DOIUrl":null,"url":null,"abstract":"<div><p>The solubility values of eight common alloying elements Al, Ca, Ce, Gd, Nd, Sn, Y and Zn in hcp Mg are experimentally measured from diffusion profiles obtained from diffusion multiples and liquid-solid diffusion couples (LSDCs) using electron probe microanalysis. These solubility values are used to stablish solidus and solvus lines and compared with the experimental results reported in the literature as well as the computed phase boundaries using two CALPHAD (CALculation of PHAse Diagrams) databases. Our experimental values for Mg-Ca (530, 580, 600, 630 °C), Mg-Ce (605, 630 °C), Mg-Gd (570, 600, 630 °C) and Mg-Nd (615, 630 °C) are the first ever measurements of the hcp solidus for these four binary systems. Additional solubility data obtained from our experiments are reported for Mg-Al (375, 420, 450, 500, 550, 600 °C), Mg-Sn (375, 420, 500, 550, 600 °C), Mg-Y (590, 610, 630 °C), and Mg-Zn (275, 450, 500, 550 °C). Our experimental data are valuable input to future thermodynamic reassessments of the eight binary systems. This study also clearly shows the effectiveness of measuring solidus data using the elegant LSDCs.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"44 6","pages":"679 - 686"},"PeriodicalIF":1.5000,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phase Equilibria and Diffusion","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11669-023-01077-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The solubility values of eight common alloying elements Al, Ca, Ce, Gd, Nd, Sn, Y and Zn in hcp Mg are experimentally measured from diffusion profiles obtained from diffusion multiples and liquid-solid diffusion couples (LSDCs) using electron probe microanalysis. These solubility values are used to stablish solidus and solvus lines and compared with the experimental results reported in the literature as well as the computed phase boundaries using two CALPHAD (CALculation of PHAse Diagrams) databases. Our experimental values for Mg-Ca (530, 580, 600, 630 °C), Mg-Ce (605, 630 °C), Mg-Gd (570, 600, 630 °C) and Mg-Nd (615, 630 °C) are the first ever measurements of the hcp solidus for these four binary systems. Additional solubility data obtained from our experiments are reported for Mg-Al (375, 420, 450, 500, 550, 600 °C), Mg-Sn (375, 420, 500, 550, 600 °C), Mg-Y (590, 610, 630 °C), and Mg-Zn (275, 450, 500, 550 °C). Our experimental data are valuable input to future thermodynamic reassessments of the eight binary systems. This study also clearly shows the effectiveness of measuring solidus data using the elegant LSDCs.
期刊介绍:
The most trusted journal for phase equilibria and thermodynamic research, ASM International''s Journal of Phase Equilibria and Diffusion features critical phase diagram evaluations on scientifically and industrially important alloy systems, authored by international experts.
The Journal of Phase Equilibria and Diffusion is critically reviewed and contains basic and applied research results, a survey of current literature and other pertinent articles. The journal covers the significance of diagrams as well as new research techniques, equipment, data evaluation, nomenclature, presentation and other aspects of phase diagram preparation and use.
Content includes information on phenomena such as kinetic control of equilibrium, coherency effects, impurity effects, and thermodynamic and crystallographic characteristics. The journal updates systems previously published in the Bulletin of Alloy Phase Diagrams as new data are discovered.