{"title":"Simulation of Multiphase Flow and Mixing in a Conveying Element of a Co-Rotating Twin-Screw Extruder by Using SPH","authors":"Tianwen Dong, Jianchun Wu, Yufei Ruan, Jiawen Huang, Shiyu Jiang","doi":"10.1155/2023/8383763","DOIUrl":null,"url":null,"abstract":"Multiphase flows and mixing in partially filled conveying elements of twin-screw extruders (TSEs) were simulated by using smoothed-particle hydrodynamics (SPH). A validation of SPH using experiment from the literature for a co-rotating twin-cam mixer indicated good agreement. A two-phase Poiseuille flow was also used to validate the accuracy of our approach. The results of two-phase flow in TSE show that the viscosity ratio significantly affects the flow and mixing of two-phase fluids. The symmetry of flow field is broken with different parameters. In the full filled case, the pressure squeezes particles into the gap, which is conducive to improve the performance of mixing of fluids. On the contrary, in the partially filled case, because there is no background pressure, particles tend to bypass the gap and flow to the cavity of the chamber. This work laid a foundation for further study of polymer blending by simulation.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":"19 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/8383763","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Multiphase flows and mixing in partially filled conveying elements of twin-screw extruders (TSEs) were simulated by using smoothed-particle hydrodynamics (SPH). A validation of SPH using experiment from the literature for a co-rotating twin-cam mixer indicated good agreement. A two-phase Poiseuille flow was also used to validate the accuracy of our approach. The results of two-phase flow in TSE show that the viscosity ratio significantly affects the flow and mixing of two-phase fluids. The symmetry of flow field is broken with different parameters. In the full filled case, the pressure squeezes particles into the gap, which is conducive to improve the performance of mixing of fluids. On the contrary, in the partially filled case, because there is no background pressure, particles tend to bypass the gap and flow to the cavity of the chamber. This work laid a foundation for further study of polymer blending by simulation.
期刊介绍:
International Journal of Chemical Engineering publishes papers on technologies for the production, processing, transportation, and use of chemicals on a large scale. Studies typically relate to processes within chemical and energy industries, especially for production of food, pharmaceuticals, fuels, and chemical feedstocks. Topics of investigation cover plant design and operation, process design and analysis, control and reaction engineering, as well as hazard mitigation and safety measures.
As well as original research, International Journal of Chemical Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.