{"title":"Clustered Sparse Structural Equation Modeling for Heterogeneous Data","authors":"Ippei Takasawa, Kensuke Tanioka, Hiroshi Yadohisa","doi":"10.1007/s00357-023-09449-9","DOIUrl":null,"url":null,"abstract":"<p>Joint analysis with clustering and structural equation modeling is one of the most popular approaches to analyzing heterogeneous data. The methods involved in this approach estimate a path diagram of the same shape for each cluster and interpret the clusters according to the magnitude of the coefficients. However, these methods have problems with difficulty in interpreting the coefficients when the number of clusters and/or paths increases and are unable to deal with any situation where the path diagram for each cluster is different. To tackle these problems, we propose two methods for simplifying the path structure and facilitating interpretation by estimating a different form of path diagram for each cluster using sparse estimation. The proposed methods and related methods are compared using numerical simulation and real data examples. The proposed methods are superior to the existing methods in terms of both fitting and interpretation.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"199 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00357-023-09449-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Joint analysis with clustering and structural equation modeling is one of the most popular approaches to analyzing heterogeneous data. The methods involved in this approach estimate a path diagram of the same shape for each cluster and interpret the clusters according to the magnitude of the coefficients. However, these methods have problems with difficulty in interpreting the coefficients when the number of clusters and/or paths increases and are unable to deal with any situation where the path diagram for each cluster is different. To tackle these problems, we propose two methods for simplifying the path structure and facilitating interpretation by estimating a different form of path diagram for each cluster using sparse estimation. The proposed methods and related methods are compared using numerical simulation and real data examples. The proposed methods are superior to the existing methods in terms of both fitting and interpretation.
期刊介绍:
To publish original and valuable papers in the field of classification, numerical taxonomy, multidimensional scaling and other ordination techniques, clustering, tree structures and other network models (with somewhat less emphasis on principal components analysis, factor analysis, and discriminant analysis), as well as associated models and algorithms for fitting them. Articles will support advances in methodology while demonstrating compelling substantive applications. Comprehensive review articles are also acceptable. Contributions will represent disciplines such as statistics, psychology, biology, information retrieval, anthropology, archeology, astronomy, business, chemistry, computer science, economics, engineering, geography, geology, linguistics, marketing, mathematics, medicine, political science, psychiatry, sociology, and soil science.