{"title":"Interaction Identification and Clique Screening for Classification with Ultra-high Dimensional Discrete Features","authors":"An, Baiguo, Feng, Guozhong, Guo, Jianhua","doi":"10.1007/s00357-021-09399-0","DOIUrl":null,"url":null,"abstract":"<p>Interactions have greatly influenced recent scientific discoveries, but the identification of interactions is challenging in ultra-high dimensions. In this study, we propose an interaction identification method for classification with ultra-high dimensional discrete features. We utilize clique sets to capture interactions among features, where features in a common clique have interactions that can be used for classification. The number of features related to the interaction is the size of the clique. Hence, our method can consider interactions caused by more than two feature variables. We propose a Kullback-Leibler divergence-based approach to correctly identify the clique sets with a probability that tends to 1 as the sample size tends to infinity. A clique screening method is then proposed to filter out clique sets that are useless for classification, and the strong sure screening property can be guaranteed. Finally, a clique naïve Bayes classifier is proposed for classification. Numerical studies demonstrate that our proposed approach performs very well.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"8 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00357-021-09399-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Interactions have greatly influenced recent scientific discoveries, but the identification of interactions is challenging in ultra-high dimensions. In this study, we propose an interaction identification method for classification with ultra-high dimensional discrete features. We utilize clique sets to capture interactions among features, where features in a common clique have interactions that can be used for classification. The number of features related to the interaction is the size of the clique. Hence, our method can consider interactions caused by more than two feature variables. We propose a Kullback-Leibler divergence-based approach to correctly identify the clique sets with a probability that tends to 1 as the sample size tends to infinity. A clique screening method is then proposed to filter out clique sets that are useless for classification, and the strong sure screening property can be guaranteed. Finally, a clique naïve Bayes classifier is proposed for classification. Numerical studies demonstrate that our proposed approach performs very well.
期刊介绍:
To publish original and valuable papers in the field of classification, numerical taxonomy, multidimensional scaling and other ordination techniques, clustering, tree structures and other network models (with somewhat less emphasis on principal components analysis, factor analysis, and discriminant analysis), as well as associated models and algorithms for fitting them. Articles will support advances in methodology while demonstrating compelling substantive applications. Comprehensive review articles are also acceptable. Contributions will represent disciplines such as statistics, psychology, biology, information retrieval, anthropology, archeology, astronomy, business, chemistry, computer science, economics, engineering, geography, geology, linguistics, marketing, mathematics, medicine, political science, psychiatry, sociology, and soil science.