Asymptotic analysis for optimal dividends in a dual risk model

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY Stochastic Models Pub Date : 2022-06-07 DOI:10.1080/15326349.2022.2080709
Arash Fahim, Lingjiong Zhu
{"title":"Asymptotic analysis for optimal dividends in a dual risk model","authors":"Arash Fahim, Lingjiong Zhu","doi":"10.1080/15326349.2022.2080709","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b></p><p>The dual risk model is a popular model in finance and insurance, which is often used to model the wealth process of a venture capital or high tech company. Optimal dividends have been extensively studied in the literature for a dual risk model. It is well known that the value function of this optimal control problem does not yield closed-form solutions except in some special cases. In this paper, we study the asymptotics of the optimal dividend problem when the parameters of the model go to either zero or infinity. Our results provide insights to the optimal strategies and the optimal values when the parameters are extreme.</p>","PeriodicalId":21970,"journal":{"name":"Stochastic Models","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/15326349.2022.2080709","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The dual risk model is a popular model in finance and insurance, which is often used to model the wealth process of a venture capital or high tech company. Optimal dividends have been extensively studied in the literature for a dual risk model. It is well known that the value function of this optimal control problem does not yield closed-form solutions except in some special cases. In this paper, we study the asymptotics of the optimal dividend problem when the parameters of the model go to either zero or infinity. Our results provide insights to the optimal strategies and the optimal values when the parameters are extreme.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双风险模型中最优股利的渐近分析
摘要双重风险模型是金融保险业中比较流行的一种模型,常用于对风险投资公司或高科技公司的财富过程进行建模。文献对双重风险模型的最优股利问题进行了广泛的研究。众所周知,这个最优控制问题的值函数除了在一些特殊情况下不能产生封闭形式的解。本文研究了模型参数趋近于零或无穷大时最优分红问题的渐近性。我们的结果为参数极值时的最优策略和最优值提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Stochastic Models
Stochastic Models 数学-统计学与概率论
CiteScore
1.30
自引率
14.30%
发文量
42
审稿时长
>12 weeks
期刊介绍: Stochastic Models publishes papers discussing the theory and applications of probability as they arise in the modeling of phenomena in the natural sciences, social sciences and technology. It presents novel contributions to mathematical theory, using structural, analytical, algorithmic or experimental approaches. In an interdisciplinary context, it discusses practical applications of stochastic models to diverse areas such as biology, computer science, telecommunications modeling, inventories and dams, reliability, storage, queueing theory, mathematical finance and operations research.
期刊最新文献
Some asymptotics for short maturity Asian options On the area between a Lévy process with secondary jump inputs and its reflected version On complete convergence for weighted sums of m-widely acceptable random variables under sub-linear expectations and its statistical applications A stochastic fluid model approach to the stationary distribution of the maximal priority process Analysis of a stochastic hybrid Gompertz tumor growth model driven by Lévy noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1