Mohammad S. Ghavami, Bedrich Sousedik, Hooshang Dabbagh, Morad Ahmadnasab
{"title":"STOCHASTIC GALERKIN FINITE ELEMENT METHOD FOR NONLINEAR ELASTICITY AND APPLICATION TO REINFORCED CONCRETE MEMBERS","authors":"Mohammad S. Ghavami, Bedrich Sousedik, Hooshang Dabbagh, Morad Ahmadnasab","doi":"10.1615/int.j.uncertaintyquantification.2022038435","DOIUrl":null,"url":null,"abstract":"We develop a stochastic Galerkin finite element method for nonlinear elasticity and apply it to reinforced concrete members with random material properties. The strategy is based on the modified Newton-Raphson method, which consists of an incremental loading process and a linearization scheme applied at each load increment. We consider that the material properties are given by a stochastic expansion in the so-called generalized polynomial chaos (gPC) framework. We search the gPC expansion of the displacement, which is then used to update the gPC expansions of the stress, strain, and internal forces. The proposed method is applied to a reinforced concrete beam with uncertain initial concrete modulus of elasticity and a shear wall with uncertain maximum compressive stress of concrete, and the results are compared to those of stochastic collocation and Monte Carlo methods. Since the systems of equations obtained in the linearization scheme using the stochastic Galerkin method are very large, and there are typically many load increments, we also studied iterative solution using preconditioned conjugate gradients. The efficiency of the proposed method is illustrated by a set of numerical experiments.","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":"20 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2022038435","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We develop a stochastic Galerkin finite element method for nonlinear elasticity and apply it to reinforced concrete members with random material properties. The strategy is based on the modified Newton-Raphson method, which consists of an incremental loading process and a linearization scheme applied at each load increment. We consider that the material properties are given by a stochastic expansion in the so-called generalized polynomial chaos (gPC) framework. We search the gPC expansion of the displacement, which is then used to update the gPC expansions of the stress, strain, and internal forces. The proposed method is applied to a reinforced concrete beam with uncertain initial concrete modulus of elasticity and a shear wall with uncertain maximum compressive stress of concrete, and the results are compared to those of stochastic collocation and Monte Carlo methods. Since the systems of equations obtained in the linearization scheme using the stochastic Galerkin method are very large, and there are typically many load increments, we also studied iterative solution using preconditioned conjugate gradients. The efficiency of the proposed method is illustrated by a set of numerical experiments.
期刊介绍:
The International Journal for Uncertainty Quantification disseminates information of permanent interest in the areas of analysis, modeling, design and control of complex systems in the presence of uncertainty. The journal seeks to emphasize methods that cross stochastic analysis, statistical modeling and scientific computing. Systems of interest are governed by differential equations possibly with multiscale features. Topics of particular interest include representation of uncertainty, propagation of uncertainty across scales, resolving the curse of dimensionality, long-time integration for stochastic PDEs, data-driven approaches for constructing stochastic models, validation, verification and uncertainty quantification for predictive computational science, and visualization of uncertainty in high-dimensional spaces. Bayesian computation and machine learning techniques are also of interest for example in the context of stochastic multiscale systems, for model selection/classification, and decision making. Reports addressing the dynamic coupling of modern experiments and modeling approaches towards predictive science are particularly encouraged. Applications of uncertainty quantification in all areas of physical and biological sciences are appropriate.