Smart Financial Investor’s Risk Prediction System Using Mobile Edge Computing

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2023-12-04 DOI:10.1007/s10723-023-09710-w
Caijun Cheng, Huazhen Huang
{"title":"Smart Financial Investor’s Risk Prediction System Using Mobile Edge Computing","authors":"Caijun Cheng, Huazhen Huang","doi":"10.1007/s10723-023-09710-w","DOIUrl":null,"url":null,"abstract":"<p>The financial system has reached its pinnacle because of economic and social growth, which has propelled the financial sector into another era. Public and corporate financial investment operations have significantly risen in this climate, and they now play a significant part in and impact the efficient use of market money. This finance sector will be affected by high-risk occurrences because of the cohabitation of dangers and passions, which will cause order to become unstable and definite financial losses. An organization’s operational risk is a significant barrier to its growth. A bit of negligence could cause the business’s standing to erode rapidly. Increasing funding management and forecasting risks is essential for the successful development of companies, enhancing their competitiveness in the marketplace and minimizing negative effects. As a result, this study takes the idea of mobile edge computing. It creates an intelligent system that can forecast different risks throughout the financial investment process based on the operational knowledge of important investment platforms. The CNN-LSTM approach, based on knowledge graphs, is then used to forecast financial risks. The results are then thoroughly examined through tests, demonstrating that the methodology can accurately estimate the risk associated with financial investments. Finally, a plan for improving the system for predicting financial risk is put out.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-023-09710-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The financial system has reached its pinnacle because of economic and social growth, which has propelled the financial sector into another era. Public and corporate financial investment operations have significantly risen in this climate, and they now play a significant part in and impact the efficient use of market money. This finance sector will be affected by high-risk occurrences because of the cohabitation of dangers and passions, which will cause order to become unstable and definite financial losses. An organization’s operational risk is a significant barrier to its growth. A bit of negligence could cause the business’s standing to erode rapidly. Increasing funding management and forecasting risks is essential for the successful development of companies, enhancing their competitiveness in the marketplace and minimizing negative effects. As a result, this study takes the idea of mobile edge computing. It creates an intelligent system that can forecast different risks throughout the financial investment process based on the operational knowledge of important investment platforms. The CNN-LSTM approach, based on knowledge graphs, is then used to forecast financial risks. The results are then thoroughly examined through tests, demonstrating that the methodology can accurately estimate the risk associated with financial investments. Finally, a plan for improving the system for predicting financial risk is put out.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于移动边缘计算的智能金融投资者风险预测系统
由于经济和社会的发展,金融体系达到了顶峰,这将金融业推向了另一个时代。在这种环境下,公共和企业的金融投资业务显著增加,它们现在在市场资金的有效利用方面发挥着重要作用并影响着市场资金的有效利用。由于危险和激情的共存,这一金融领域将受到高风险事件的影响,这将导致秩序变得不稳定和确定的财务损失。一个组织的操作风险是其成长的一个重要障碍。一点疏忽都可能导致企业的地位迅速受到侵蚀。加强资金管理和预测风险对于公司的成功发展,提高其在市场上的竞争力和尽量减少负面影响至关重要。因此,本研究采用了移动边缘计算的思想。它基于重要投资平台的操作知识,创建了一个智能系统,可以预测整个金融投资过程中的不同风险。基于知识图的CNN-LSTM方法随后被用于预测金融风险。然后通过测试彻底检查结果,证明该方法可以准确地估计与金融投资相关的风险。最后,提出了完善金融风险预测系统的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1