Deep Reinforcement Learning and Markov Decision Problem for Task Offloading in Mobile Edge Computing

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2023-12-04 DOI:10.1007/s10723-023-09708-4
Xiaohu Gao, Mei Choo Ang, Sara A. Althubiti
{"title":"Deep Reinforcement Learning and Markov Decision Problem for Task Offloading in Mobile Edge Computing","authors":"Xiaohu Gao, Mei Choo Ang, Sara A. Althubiti","doi":"10.1007/s10723-023-09708-4","DOIUrl":null,"url":null,"abstract":"<p>Mobile Edge Computing (MEC) offers cloud-like capabilities to mobile users, making it an up-and-coming method for advancing the Internet of Things (IoT). However, current approaches are limited by various factors such as network latency, bandwidth, energy consumption, task characteristics, and edge server overload. To address these limitations, this research propose a novel approach that integrates Deep Reinforcement Learning (DRL) with Deep Deterministic Policy Gradient (DDPG) and Markov Decision Problem for task offloading in MEC. Among DRL algorithms, the ITODDPG algorithm based on the DDPG algorithm and MDP is a popular choice for task offloading in MEC. Firstly, the ITODDPG algorithm formulates the task offloading problem in MEC as an MDP, which enables the agent to learn a policy that maximizes the expected cumulative reward. Secondly, ITODDPG employs a deep neural network to approximate the Q-function, which maps the state-action pairs to their expected cumulative rewards. Finally, the experimental results demonstrate that the ITODDPG algorithm outperforms the baseline algorithms regarding average compensation and convergence speed. In addition to its superior performance, our proposed approach can learn complex non-linear policies using DNN and an information-theoretic objective function to improve the performance of task offloading in MEC. Compared to traditional methods, our approach delivers improved performance, making it highly effective for developing IoT environments. Experimental trials were carried out, and the results indicate that the suggested approach can enhance performance compared to the other three baseline methods. It is highly scalable, capable of handling large and complex environments, and suitable for deployment in real-world scenarios, ensuring its widespread applicability to a diverse range of task offloading and MEC applications.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-023-09708-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Mobile Edge Computing (MEC) offers cloud-like capabilities to mobile users, making it an up-and-coming method for advancing the Internet of Things (IoT). However, current approaches are limited by various factors such as network latency, bandwidth, energy consumption, task characteristics, and edge server overload. To address these limitations, this research propose a novel approach that integrates Deep Reinforcement Learning (DRL) with Deep Deterministic Policy Gradient (DDPG) and Markov Decision Problem for task offloading in MEC. Among DRL algorithms, the ITODDPG algorithm based on the DDPG algorithm and MDP is a popular choice for task offloading in MEC. Firstly, the ITODDPG algorithm formulates the task offloading problem in MEC as an MDP, which enables the agent to learn a policy that maximizes the expected cumulative reward. Secondly, ITODDPG employs a deep neural network to approximate the Q-function, which maps the state-action pairs to their expected cumulative rewards. Finally, the experimental results demonstrate that the ITODDPG algorithm outperforms the baseline algorithms regarding average compensation and convergence speed. In addition to its superior performance, our proposed approach can learn complex non-linear policies using DNN and an information-theoretic objective function to improve the performance of task offloading in MEC. Compared to traditional methods, our approach delivers improved performance, making it highly effective for developing IoT environments. Experimental trials were carried out, and the results indicate that the suggested approach can enhance performance compared to the other three baseline methods. It is highly scalable, capable of handling large and complex environments, and suitable for deployment in real-world scenarios, ensuring its widespread applicability to a diverse range of task offloading and MEC applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动边缘计算中任务卸载的深度强化学习和马尔可夫决策问题
移动边缘计算(MEC)为移动用户提供类似云的功能,使其成为推进物联网(IoT)的一种新兴方法。然而,当前的方法受到各种因素的限制,例如网络延迟、带宽、能耗、任务特征和边缘服务器过载。为了解决这些限制,本研究提出了一种将深度强化学习(DRL)与深度确定性策略梯度(DDPG)和马尔可夫决策问题相结合的新方法,用于MEC中的任务卸载。在DRL算法中,基于DDPG算法和MDP的ITODDPG算法是MEC中任务卸载的热门选择。首先,ITODDPG算法将MEC中的任务卸载问题表述为一个MDP,使agent能够学习到期望累积奖励最大化的策略。其次,ITODDPG使用深度神经网络来近似q函数,将状态-动作对映射到它们的期望累积奖励。最后,实验结果表明,ITODDPG算法在平均补偿和收敛速度方面优于基准算法。除了其优越的性能外,我们提出的方法可以使用深度神经网络和信息论目标函数来学习复杂的非线性策略,以提高MEC中任务卸载的性能。与传统方法相比,我们的方法提供了更高的性能,使其在开发物联网环境方面非常有效。实验结果表明,与其他三种基线方法相比,该方法可以提高性能。它具有高度可扩展性,能够处理大型复杂环境,适合在实际场景中部署,确保其广泛适用于各种任务卸载和MEC应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1