Unveiling the electronic structure and optical properties of two-dimensional TMDCs: first-principles study

IF 2.8 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Optical Materials Express Pub Date : 2023-11-30 DOI:10.1364/ome.502050
Banat Gul, Muhammad Salman Khan, Abdelhay Salah Mohamed, Guenez Wafa, and Hijaz Ahmad
{"title":"Unveiling the electronic structure and optical properties of two-dimensional TMDCs: first-principles study","authors":"Banat Gul, Muhammad Salman Khan, Abdelhay Salah Mohamed, Guenez Wafa, and Hijaz Ahmad","doi":"10.1364/ome.502050","DOIUrl":null,"url":null,"abstract":"Transition metal dichalcogenide (TMDC) materials are considered extremely efficient materials with significant applications in photovoltaics and optoelectronics. Here, the electronic structure and optoelectronic features of new transition metal-containing dichalcogenides are studied using state-of-the-art density functional theoretical calculations. For the analysis of the electronic band structures, we employed a modified Becke-Johnson potential. According to the band structure analysis, Platinum-based dichalcogenides possess an indirect band profile, having the valence band maximum and the conduction band minimum situated at discrete symmetry regions. At the same time, the zirconium-based materials have a direct type band structure at the same Γ-point. We calculated cohesive energies and formation energies to assess the stability of these materials. The substantial optical parameters such as the two parts of the dielectric constant, absorption coefficients, energy loss functions, reflectivity spectra, refractive index, real optical conductivity spectra, spectra, and the extinction coefficients, are calculated. These findings provide insight into potential applications in optoelectronic devices. The calculated band gaps and refractive index revealed an inverse relationship. This research aims to make a significant contribution to the advancement of various and possibly gainful semiconducting technologies, as well as their practical applications.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"8 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1364/ome.502050","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal dichalcogenide (TMDC) materials are considered extremely efficient materials with significant applications in photovoltaics and optoelectronics. Here, the electronic structure and optoelectronic features of new transition metal-containing dichalcogenides are studied using state-of-the-art density functional theoretical calculations. For the analysis of the electronic band structures, we employed a modified Becke-Johnson potential. According to the band structure analysis, Platinum-based dichalcogenides possess an indirect band profile, having the valence band maximum and the conduction band minimum situated at discrete symmetry regions. At the same time, the zirconium-based materials have a direct type band structure at the same Γ-point. We calculated cohesive energies and formation energies to assess the stability of these materials. The substantial optical parameters such as the two parts of the dielectric constant, absorption coefficients, energy loss functions, reflectivity spectra, refractive index, real optical conductivity spectra, spectra, and the extinction coefficients, are calculated. These findings provide insight into potential applications in optoelectronic devices. The calculated band gaps and refractive index revealed an inverse relationship. This research aims to make a significant contribution to the advancement of various and possibly gainful semiconducting technologies, as well as their practical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示二维TMDCs的电子结构和光学性质:第一性原理研究
过渡金属二硫化物(TMDC)材料被认为是非常高效的材料,在光伏和光电子领域具有重要的应用。本文采用最先进的密度泛函理论计算方法研究了新型过渡金属二硫族化合物的电子结构和光电子特性。为了分析电子能带结构,我们采用了改进的Becke-Johnson势。根据谱带结构分析,铂基二硫族化合物具有间接谱带,价带最大值和导带最小值位于离散对称区。同时,锆基材料在相同的Γ-point处具有直接型带结构。我们计算了内聚能和形成能来评估这些材料的稳定性。计算了两部分的介电常数、吸收系数、能量损失函数、反射率谱、折射率、实际光电导率谱、光谱和消光系数等重要光学参数。这些发现为光电器件的潜在应用提供了见解。计算出的带隙与折射率呈反比关系。本研究旨在为各种半导体技术及其实际应用的发展做出重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optical Materials Express
Optical Materials Express MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
5.50
自引率
3.60%
发文量
377
审稿时长
1.5 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optical Materials Express (OMEx), OSA''s open-access, rapid-review journal, primarily emphasizes advances in both conventional and novel optical materials, their properties, theory and modeling, synthesis and fabrication approaches for optics and photonics; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The journal covers a full range of topics, including, but not limited to: Artificially engineered optical structures Biomaterials Optical detector materials Optical storage media Materials for integrated optics Nonlinear optical materials Laser materials Metamaterials Nanomaterials Organics and polymers Soft materials IR materials Materials for fiber optics Hybrid technologies Materials for quantum photonics Optical Materials Express considers original research articles, feature issue contributions, invited reviews, and comments on published articles. The Journal also publishes occasional short, timely opinion articles from experts and thought-leaders in the field on current or emerging topic areas that are generating significant interest.
期刊最新文献
2023 Optical Materials Express Emerging Researcher Best Paper Prize: editorial Enhanced p-type conductivity of hexagonal boron nitride by an efficient two-step doping strategy On the thermal stability of multilayer optics for use with high X-ray intensities Femtosecond laser synthesis of YAG:Ce3+ nanoparticles in liquid Silicon nanohole based enhanced light absorbers for thin film solar cell applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1