{"title":"An artificial neural network representation of the SABR stochastic volatility model","authors":"William McGhee","doi":"10.21314/jcf.2021.007","DOIUrl":null,"url":null,"abstract":"In this article, the Universal Approximation Theorem of Artificial Neural Networks (ANNs) is applied to the SABR stochastic volatility model in order to construct highly efficient representations. Initially, the SABR approximation of Hagan et al. [2002] is considered, then a more accurate integration scheme of McGhee [2011] as well as a two factor finite difference scheme. The resulting ANN calculates 10,000 times faster than the finite difference scheme whilst maintaining a high degree of accuracy. As a result, the ANN dispenses with the need for the commonly used SABR Approximation.","PeriodicalId":51731,"journal":{"name":"Journal of Computational Finance","volume":"5 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Finance","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/jcf.2021.007","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, the Universal Approximation Theorem of Artificial Neural Networks (ANNs) is applied to the SABR stochastic volatility model in order to construct highly efficient representations. Initially, the SABR approximation of Hagan et al. [2002] is considered, then a more accurate integration scheme of McGhee [2011] as well as a two factor finite difference scheme. The resulting ANN calculates 10,000 times faster than the finite difference scheme whilst maintaining a high degree of accuracy. As a result, the ANN dispenses with the need for the commonly used SABR Approximation.
期刊介绍:
The Journal of Computational Finance is an international peer-reviewed journal dedicated to advancing knowledge in the area of financial mathematics. The journal is focused on the measurement, management and analysis of financial risk, and provides detailed insight into numerical and computational techniques in the pricing, hedging and risk management of financial instruments. The journal welcomes papers dealing with innovative computational techniques in the following areas: Numerical solutions of pricing equations: finite differences, finite elements, and spectral techniques in one and multiple dimensions. Simulation approaches in pricing and risk management: advances in Monte Carlo and quasi-Monte Carlo methodologies; new strategies for market factors simulation. Optimization techniques in hedging and risk management. Fundamental numerical analysis relevant to finance: effect of boundary treatments on accuracy; new discretization of time-series analysis. Developments in free-boundary problems in finance: alternative ways and numerical implications in American option pricing.