{"title":"Information geometry","authors":"Shun-ichi Amari","doi":"10.1007/s11537-020-1920-5","DOIUrl":null,"url":null,"abstract":"<p>Information geometry has emerged from the study of the invariant structure in families of probability distributions. This invariance uniquely determines a second-order symmetric tensor <i>g</i> and third-order symmetric tensor <i>T</i> in a manifold of probability distributions. A pair of these tensors (<i>g, T</i>) defines a Riemannian metric and a pair of affine connections which together preserve the metric. Information geometry involves studying a Riemannian manifold having a pair of dual affine connections. Such a structure also arises from an asymmetric divergence function and affine differential geometry. A dually flat Riemannian manifold is particularly useful for various applications, because a generalized Pythagorean theorem and projection theorem hold. The Wasserstein distance gives another important geometry on probability distributions, which is non-invariant but responsible for the metric properties of a sample space. I attempt to construct information geometry of the entropy-regularized Wasserstein distance.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11537-020-1920-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Information geometry has emerged from the study of the invariant structure in families of probability distributions. This invariance uniquely determines a second-order symmetric tensor g and third-order symmetric tensor T in a manifold of probability distributions. A pair of these tensors (g, T) defines a Riemannian metric and a pair of affine connections which together preserve the metric. Information geometry involves studying a Riemannian manifold having a pair of dual affine connections. Such a structure also arises from an asymmetric divergence function and affine differential geometry. A dually flat Riemannian manifold is particularly useful for various applications, because a generalized Pythagorean theorem and projection theorem hold. The Wasserstein distance gives another important geometry on probability distributions, which is non-invariant but responsible for the metric properties of a sample space. I attempt to construct information geometry of the entropy-regularized Wasserstein distance.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.