pylspack: Parallel Algorithms and Data Structures for Sketching, Column Subset Selection, Regression, and Leverage Scores

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Mathematical Software Pub Date : 2022-12-19 DOI:https://dl.acm.org/doi/10.1145/3555370
Aleksandros Sobczyk, Efstratios Gallopoulos
{"title":"pylspack: Parallel Algorithms and Data Structures for Sketching, Column Subset Selection, Regression, and Leverage Scores","authors":"Aleksandros Sobczyk, Efstratios Gallopoulos","doi":"https://dl.acm.org/doi/10.1145/3555370","DOIUrl":null,"url":null,"abstract":"<p>We present parallel algorithms and data structures for three fundamental operations in Numerical Linear Algebra: (i) Gaussian and CountSketch random projections and their combination, (ii) computation of the Gram matrix, and (iii) computation of the squared row norms of the product of two matrices, with a special focus on “tall-and-skinny” matrices, which arise in many applications. We provide a detailed analysis of the ubiquitous CountSketch transform and its combination with Gaussian random projections, accounting for memory requirements, computational complexity and workload balancing. We also demonstrate how these results can be applied to column subset selection, least squares regression and leverage scores computation. These tools have been implemented in <monospace>pylspack</monospace>, a publicly available Python package<sup>1</sup> whose core is written in C++ and parallelized with OpenMP and that is compatible with standard matrix data structures of SciPy and NumPy. Extensive numerical experiments indicate that the proposed algorithms scale well and significantly outperform existing libraries for tall-and-skinny matrices.</p>","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":"9 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3555370","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

We present parallel algorithms and data structures for three fundamental operations in Numerical Linear Algebra: (i) Gaussian and CountSketch random projections and their combination, (ii) computation of the Gram matrix, and (iii) computation of the squared row norms of the product of two matrices, with a special focus on “tall-and-skinny” matrices, which arise in many applications. We provide a detailed analysis of the ubiquitous CountSketch transform and its combination with Gaussian random projections, accounting for memory requirements, computational complexity and workload balancing. We also demonstrate how these results can be applied to column subset selection, least squares regression and leverage scores computation. These tools have been implemented in pylspack, a publicly available Python package1 whose core is written in C++ and parallelized with OpenMP and that is compatible with standard matrix data structures of SciPy and NumPy. Extensive numerical experiments indicate that the proposed algorithms scale well and significantly outperform existing libraries for tall-and-skinny matrices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并行算法和数据结构素描,列子集选择,回归,和杠杆得分
我们提出了数值线性代数中三个基本运算的并行算法和数据结构:(i)高斯和countssketch随机投影及其组合,(ii) Gram矩阵的计算,以及(iii)两个矩阵乘积的平方行范数的计算,特别关注在许多应用中出现的“高和瘦”矩阵。我们详细分析了无处不在的countssketch变换及其与高斯随机投影的结合,考虑了内存需求,计算复杂性和工作负载平衡。我们还演示了如何将这些结果应用于列子集选择、最小二乘回归和杠杆分数计算。这些工具已经在pylspack中实现,pylspack是一个公开可用的Python包,其核心是用c++编写的,并与OpenMP并行,并且与SciPy和NumPy的标准矩阵数据结构兼容。大量的数值实验表明,所提出的算法具有良好的可扩展性,并且明显优于现有的高瘦矩阵库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software 工程技术-计算机:软件工程
CiteScore
5.00
自引率
3.70%
发文量
50
审稿时长
>12 weeks
期刊介绍: As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.
期刊最新文献
Algorithm xxx: A Covariate-Dependent Approach to Gaussian Graphical Modeling in R Remark on Algorithm 1012: Computing projections with large data sets PyOED: An Extensible Suite for Data Assimilation and Model-Constrained Optimal Design of Experiments Avoiding breakdown in incomplete factorizations in low precision arithmetic Algorithm xxx: PyGenStability, a multiscale community detection with generalized Markov Stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1