Cache-oblivious Hilbert Curve-based Blocking Scheme for Matrix Transposition

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Mathematical Software Pub Date : 2022-12-19 DOI:https://dl.acm.org/doi/10.1145/3555353
João Nuno Ferreira Alves, Luís Manuel Silveira Russo, Alexandre Francisco
{"title":"Cache-oblivious Hilbert Curve-based Blocking Scheme for Matrix Transposition","authors":"João Nuno Ferreira Alves, Luís Manuel Silveira Russo, Alexandre Francisco","doi":"https://dl.acm.org/doi/10.1145/3555353","DOIUrl":null,"url":null,"abstract":"<p>This article presents a fast SIMD Hilbert space-filling curve generator, which supports a new cache-oblivious blocking-scheme technique applied to the out-of-place transposition of general matrices. Matrix operations found in high performance computing libraries are usually parameterized based on host microprocessor specifications to minimize data movement within the different levels of memory hierarchy. The performance of cache-oblivious algorithms does not rely on such parameterizations. This type of algorithm provides an elegant and portable solution to address the lack of standardization in modern-day processors. Our solution consists in an iterative blocking scheme that takes advantage of the locality-preserving properties of Hilbert space-filling curves to minimize data movement in any memory hierarchy. This scheme traverses the input matrix, in <i>O(nm)</i> time and space, improving the behavior of matrix algorithms that inherently present poor memory locality. The application of this technique to the problem of out-of-place matrix transposition achieved competitive results when compared to state-of-the-art approaches. The performance of our solution surpassed Intel MKL version after employing standard software prefetching techniques.</p>","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":"39 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3555353","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a fast SIMD Hilbert space-filling curve generator, which supports a new cache-oblivious blocking-scheme technique applied to the out-of-place transposition of general matrices. Matrix operations found in high performance computing libraries are usually parameterized based on host microprocessor specifications to minimize data movement within the different levels of memory hierarchy. The performance of cache-oblivious algorithms does not rely on such parameterizations. This type of algorithm provides an elegant and portable solution to address the lack of standardization in modern-day processors. Our solution consists in an iterative blocking scheme that takes advantage of the locality-preserving properties of Hilbert space-filling curves to minimize data movement in any memory hierarchy. This scheme traverses the input matrix, in O(nm) time and space, improving the behavior of matrix algorithms that inherently present poor memory locality. The application of this technique to the problem of out-of-place matrix transposition achieved competitive results when compared to state-of-the-art approaches. The performance of our solution surpassed Intel MKL version after employing standard software prefetching techniques.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于缓存无关Hilbert曲线的矩阵转置阻塞方案
本文提出了一个快速SIMD Hilbert空间填充曲线生成器,它支持一种新的缓存无关阻塞方案技术,应用于一般矩阵的移位。在高性能计算库中发现的矩阵操作通常是基于主机微处理器规范参数化的,以最大限度地减少不同内存层次中的数据移动。缓参无关算法的性能不依赖于这种参数化。这种类型的算法提供了一种优雅且可移植的解决方案,以解决现代处理器中缺乏标准化的问题。我们的解决方案包括一个迭代阻塞方案,该方案利用希尔伯特空间填充曲线的位置保持特性来最小化任何内存层次中的数据移动。该方案在O(nm)的时间和空间内遍历输入矩阵,改善了矩阵算法固有的内存局部性差的行为。与最先进的方法相比,将该技术应用于矩阵移位问题取得了具有竞争力的结果。我们的解决方案在采用标准软件预取技术后,性能优于英特尔MKL版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software 工程技术-计算机:软件工程
CiteScore
5.00
自引率
3.70%
发文量
50
审稿时长
>12 weeks
期刊介绍: As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.
期刊最新文献
Algorithm xxx: A Covariate-Dependent Approach to Gaussian Graphical Modeling in R Remark on Algorithm 1012: Computing projections with large data sets PyOED: An Extensible Suite for Data Assimilation and Model-Constrained Optimal Design of Experiments Avoiding breakdown in incomplete factorizations in low precision arithmetic Algorithm xxx: PyGenStability, a multiscale community detection with generalized Markov Stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1