High-level Modeling and Verification Platform for Elastic Circuits with Process Variation Considerations

IF 2.1 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Journal on Emerging Technologies in Computing Systems Pub Date : 2022-10-13 DOI:https://dl.acm.org/doi/10.1145/3534971
Meysam Zaeemi, Siamak Mohammadi
{"title":"High-level Modeling and Verification Platform for Elastic Circuits with Process Variation Considerations","authors":"Meysam Zaeemi, Siamak Mohammadi","doi":"https://dl.acm.org/doi/10.1145/3534971","DOIUrl":null,"url":null,"abstract":"<p>In addition to the advantages of asynchronous circuits, compatibility with synchronous EDA tools is another strength point of synchronous elastic circuits. Synchronous elastic circuits face some challenges, such as process variations that can compromise its performance and functionality, and the multitude of available implementations based on elastic elements’ combinations, meaning that choosing the best combination could not be simple. In this paper, a novel method is introduced to model and verify synchronous elastic circuits in the presence of variations. The model is based on xMAS, which is a new formal modeling paradigm to synthesize, test, and verify circuits and networks. In this method, various elastic elements are modeled and available in the form of a library in xMAS, so the designer can build complicated elastic circuits by combining different elastic elements. Additionally, by translating a high-level xMAS model into a SAN statistical model and using its capabilities, elements’ internal delays will be embedded, which makes the high-level modeling and elastic circuits’ high-resolution time analysis available. Based on the obtained results, elastic circuits are highly capable of tolerating variations. However, this phenomenon could lead to a maximum of 2.35% error in synchronization control units and data in these circuits.</p>","PeriodicalId":50924,"journal":{"name":"ACM Journal on Emerging Technologies in Computing Systems","volume":"107 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal on Emerging Technologies in Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3534971","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

In addition to the advantages of asynchronous circuits, compatibility with synchronous EDA tools is another strength point of synchronous elastic circuits. Synchronous elastic circuits face some challenges, such as process variations that can compromise its performance and functionality, and the multitude of available implementations based on elastic elements’ combinations, meaning that choosing the best combination could not be simple. In this paper, a novel method is introduced to model and verify synchronous elastic circuits in the presence of variations. The model is based on xMAS, which is a new formal modeling paradigm to synthesize, test, and verify circuits and networks. In this method, various elastic elements are modeled and available in the form of a library in xMAS, so the designer can build complicated elastic circuits by combining different elastic elements. Additionally, by translating a high-level xMAS model into a SAN statistical model and using its capabilities, elements’ internal delays will be embedded, which makes the high-level modeling and elastic circuits’ high-resolution time analysis available. Based on the obtained results, elastic circuits are highly capable of tolerating variations. However, this phenomenon could lead to a maximum of 2.35% error in synchronization control units and data in these circuits.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑工艺变化的弹性电路高级建模与验证平台
除了异步电路的优点之外,与同步EDA工具的兼容性是同步弹性电路的另一个优点。同步弹性电路面临着一些挑战,例如可能损害其性能和功能的过程变化,以及基于弹性元件组合的大量可用实现,这意味着选择最佳组合可能并不简单。本文提出了一种新的方法来模拟和验证存在变化的同步弹性电路。该模型基于xMAS, xMAS是一种新的形式化建模范式,用于电路和网络的综合、测试和验证。该方法对各种弹性元件进行建模,并在xMAS中以库的形式提供,从而使设计人员可以通过组合不同的弹性元件来构建复杂的弹性电路。此外,通过将高级xMAS模型转换为SAN统计模型并使用其功能,可以嵌入元件的内部延迟,从而实现高级建模和弹性电路的高分辨率时间分析。根据得到的结果,弹性电路具有很强的容忍变化的能力。然而,这种现象可能导致同步控制单元和这些电路中的数据的最大误差为2.35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Journal on Emerging Technologies in Computing Systems
ACM Journal on Emerging Technologies in Computing Systems 工程技术-工程:电子与电气
CiteScore
4.80
自引率
4.50%
发文量
86
审稿时长
3 months
期刊介绍: The Journal of Emerging Technologies in Computing Systems invites submissions of original technical papers describing research and development in emerging technologies in computing systems. Major economic and technical challenges are expected to impede the continued scaling of semiconductor devices. This has resulted in the search for alternate mechanical, biological/biochemical, nanoscale electronic, asynchronous and quantum computing and sensor technologies. As the underlying nanotechnologies continue to evolve in the labs of chemists, physicists, and biologists, it has become imperative for computer scientists and engineers to translate the potential of the basic building blocks (analogous to the transistor) emerging from these labs into information systems. Their design will face multiple challenges ranging from the inherent (un)reliability due to the self-assembly nature of the fabrication processes for nanotechnologies, from the complexity due to the sheer volume of nanodevices that will have to be integrated for complex functionality, and from the need to integrate these new nanotechnologies with silicon devices in the same system. The journal provides comprehensive coverage of innovative work in the specification, design analysis, simulation, verification, testing, and evaluation of computing systems constructed out of emerging technologies and advanced semiconductors
期刊最新文献
PUF-Based Digital Money with Propagation-of-Provenance and Offline Transfers Between Two Parties SAT-based Exact Modulo Scheduling Mapping for Resource-Constrained CGRAs Towards practical superconducting accelerators for machine learning using U-SFQ Towards Energy-Efficient Spiking Neural Networks: A Robust Hybrid CMOS-Memristive Accelerator An Analysis of Various Design Pathways Towards Multi-Terabit Photonic On-Interposer Interconnects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1