Simone Ruffini, Luca Caronti, Kasım Sinan Yıldırım, Davide Brunelli
{"title":"NORM: An FPGA-based Non-volatile Memory Emulation Framework for Intermittent Computing","authors":"Simone Ruffini, Luca Caronti, Kasım Sinan Yıldırım, Davide Brunelli","doi":"https://dl.acm.org/doi/10.1145/3517812","DOIUrl":null,"url":null,"abstract":"<p>Today’s intermittent computing systems operate by relying only on harvested energy accumulated in their tiny energy reservoirs, typically capacitors. An intermittent device dies due to a power failure when there is no energy in its capacitor and boots again when the harvested energy is sufficient to power its hardware components. Power failures prevent the forward progress of computation due to the frequent loss of computational state. To remedy this problem, intermittent computing systems comprise built-in fast non-volatile memories with high write endurance to store information that persists despite frequent power failures. However, the lack of design tools makes fast-prototyping these systems difficult. Even though FPGAs are common platforms for fast prototyping and behavioral verification of continuously powered architectures, they do not target prototyping intermittent computing systems. This article introduces a new FPGA-based framework, named NORM (<b>N</b>on-volatile mem<b>OR</b>y e<b>M</b>ulator), to emulate and verify the behavior of any intermittent computing system that exploits fast non-volatile memories. Our evaluation showed that NORM can be used to emulate and validate FeRAM-based transiently powered hardware architectures successfully.</p>","PeriodicalId":50924,"journal":{"name":"ACM Journal on Emerging Technologies in Computing Systems","volume":"9 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal on Emerging Technologies in Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3517812","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Today’s intermittent computing systems operate by relying only on harvested energy accumulated in their tiny energy reservoirs, typically capacitors. An intermittent device dies due to a power failure when there is no energy in its capacitor and boots again when the harvested energy is sufficient to power its hardware components. Power failures prevent the forward progress of computation due to the frequent loss of computational state. To remedy this problem, intermittent computing systems comprise built-in fast non-volatile memories with high write endurance to store information that persists despite frequent power failures. However, the lack of design tools makes fast-prototyping these systems difficult. Even though FPGAs are common platforms for fast prototyping and behavioral verification of continuously powered architectures, they do not target prototyping intermittent computing systems. This article introduces a new FPGA-based framework, named NORM (Non-volatile memORy eMulator), to emulate and verify the behavior of any intermittent computing system that exploits fast non-volatile memories. Our evaluation showed that NORM can be used to emulate and validate FeRAM-based transiently powered hardware architectures successfully.
期刊介绍:
The Journal of Emerging Technologies in Computing Systems invites submissions of original technical papers describing research and development in emerging technologies in computing systems. Major economic and technical challenges are expected to impede the continued scaling of semiconductor devices. This has resulted in the search for alternate mechanical, biological/biochemical, nanoscale electronic, asynchronous and quantum computing and sensor technologies. As the underlying nanotechnologies continue to evolve in the labs of chemists, physicists, and biologists, it has become imperative for computer scientists and engineers to translate the potential of the basic building blocks (analogous to the transistor) emerging from these labs into information systems. Their design will face multiple challenges ranging from the inherent (un)reliability due to the self-assembly nature of the fabrication processes for nanotechnologies, from the complexity due to the sheer volume of nanodevices that will have to be integrated for complex functionality, and from the need to integrate these new nanotechnologies with silicon devices in the same system.
The journal provides comprehensive coverage of innovative work in the specification, design analysis, simulation, verification, testing, and evaluation of computing systems constructed out of emerging technologies and advanced semiconductors