N. Nalla Anandakumar, Mohammad S. Hashmi, Somitra Kumar Sanadhya
{"title":"Design and Analysis of FPGA-based PUFs with Enhanced Performance for Hardware-oriented Security","authors":"N. Nalla Anandakumar, Mohammad S. Hashmi, Somitra Kumar Sanadhya","doi":"https://dl.acm.org/doi/10.1145/3517813","DOIUrl":null,"url":null,"abstract":"<p>This article presents a thorough analysis of two distinct Physically Unclonable Functions (PUF), namely RO-PUF (Ring oscillator-based PUF) and RS-LPUF (RS Latch-based PUF), prototyped on FPGA. It is shown that the implemented PUFs possess significantly enhanced performance when compared to the state of the art. It is also identified that the enhancements are achieved through the incorporation of Programmable Delay Lines of FPGA Lookup Tables, the Temporal Majority Voting (TMV) scheme, and placed macro techniques for routing and placements of PUF units. The prototypes developed on Xilinx Artix-7 FPGAs are used for validation over the rated temperature range of 0-85°<i>C</i> with ±5% variation in the supply voltage. The proposed schemes when evaluated experimentally also achieve good uniformity, bit-aliasing, uniqueness, and reliability. Finally, it is shown that the proposed designs outperform the existing conventional PUFs in the area and speed tradeoff.</p>","PeriodicalId":50924,"journal":{"name":"ACM Journal on Emerging Technologies in Computing Systems","volume":"15 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal on Emerging Technologies in Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3517813","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents a thorough analysis of two distinct Physically Unclonable Functions (PUF), namely RO-PUF (Ring oscillator-based PUF) and RS-LPUF (RS Latch-based PUF), prototyped on FPGA. It is shown that the implemented PUFs possess significantly enhanced performance when compared to the state of the art. It is also identified that the enhancements are achieved through the incorporation of Programmable Delay Lines of FPGA Lookup Tables, the Temporal Majority Voting (TMV) scheme, and placed macro techniques for routing and placements of PUF units. The prototypes developed on Xilinx Artix-7 FPGAs are used for validation over the rated temperature range of 0-85°C with ±5% variation in the supply voltage. The proposed schemes when evaluated experimentally also achieve good uniformity, bit-aliasing, uniqueness, and reliability. Finally, it is shown that the proposed designs outperform the existing conventional PUFs in the area and speed tradeoff.
期刊介绍:
The Journal of Emerging Technologies in Computing Systems invites submissions of original technical papers describing research and development in emerging technologies in computing systems. Major economic and technical challenges are expected to impede the continued scaling of semiconductor devices. This has resulted in the search for alternate mechanical, biological/biochemical, nanoscale electronic, asynchronous and quantum computing and sensor technologies. As the underlying nanotechnologies continue to evolve in the labs of chemists, physicists, and biologists, it has become imperative for computer scientists and engineers to translate the potential of the basic building blocks (analogous to the transistor) emerging from these labs into information systems. Their design will face multiple challenges ranging from the inherent (un)reliability due to the self-assembly nature of the fabrication processes for nanotechnologies, from the complexity due to the sheer volume of nanodevices that will have to be integrated for complex functionality, and from the need to integrate these new nanotechnologies with silicon devices in the same system.
The journal provides comprehensive coverage of innovative work in the specification, design analysis, simulation, verification, testing, and evaluation of computing systems constructed out of emerging technologies and advanced semiconductors