Physiological responses and algae inhibition of Pontederia cordata to simulated eutrophication and acid rain co-pollution

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2023-11-28 DOI:10.1186/s13717-023-00467-4
Yan Li, Xi Qi, Jianpan Xin, Chu Zhao, Runan Tian
{"title":"Physiological responses and algae inhibition of Pontederia cordata to simulated eutrophication and acid rain co-pollution","authors":"Yan Li, Xi Qi, Jianpan Xin, Chu Zhao, Runan Tian","doi":"10.1186/s13717-023-00467-4","DOIUrl":null,"url":null,"abstract":"Eutrophication and acid rain are two threats that many water bodies must contend with. Eutrophication and climate change have accelerated widespread outbreaks of cyanobacterial blooms as both have become more severe. Pontederia cordata, a garden ornamental plant, can inhibit some algae growth and remove total nitrogen (TN) and total phosphorus (TP) from the water. In this study, we investigated how simulated acid rain and eutrophication co-pollution affected P. cordata's growth physiology and ability to inhibit algae growth. Under mild eutrophication (2 mg·L−1 TN, 0.4 mg·L−1 TP, and 15 mg·L−1 CODMn) or weak acid rain (pH = 5.0), P. cordata alleviated the degree of cell membrane lipid peroxidation by stabilizing superoxide dismutase (SOD) and catalase (CAT) activities in the leaves, allowing for normal plant growth. Under mild eutrophication and acid rain conditions, cultured P. cordata water samples maintained strong algae inhibition by reducing the Chl a content and SOD activity of Microcystis aeruginosa cells. Compound stress where acid rain was the primary inhibitory factor along with moderate or severe eutrophication inhibited P. cordata growth, which probably reduced the input of algae-inhibiting allelochemicals, thus reducing its ability to inhibit algae. In summary, P. cordata has application potential in mild eutrophic water and acid rain (pH ≥ 4). These findings provide guidance for further research on phytoremediation and algae control in scenarios of compound pollution.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s13717-023-00467-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Eutrophication and acid rain are two threats that many water bodies must contend with. Eutrophication and climate change have accelerated widespread outbreaks of cyanobacterial blooms as both have become more severe. Pontederia cordata, a garden ornamental plant, can inhibit some algae growth and remove total nitrogen (TN) and total phosphorus (TP) from the water. In this study, we investigated how simulated acid rain and eutrophication co-pollution affected P. cordata's growth physiology and ability to inhibit algae growth. Under mild eutrophication (2 mg·L−1 TN, 0.4 mg·L−1 TP, and 15 mg·L−1 CODMn) or weak acid rain (pH = 5.0), P. cordata alleviated the degree of cell membrane lipid peroxidation by stabilizing superoxide dismutase (SOD) and catalase (CAT) activities in the leaves, allowing for normal plant growth. Under mild eutrophication and acid rain conditions, cultured P. cordata water samples maintained strong algae inhibition by reducing the Chl a content and SOD activity of Microcystis aeruginosa cells. Compound stress where acid rain was the primary inhibitory factor along with moderate or severe eutrophication inhibited P. cordata growth, which probably reduced the input of algae-inhibiting allelochemicals, thus reducing its ability to inhibit algae. In summary, P. cordata has application potential in mild eutrophic water and acid rain (pH ≥ 4). These findings provide guidance for further research on phytoremediation and algae control in scenarios of compound pollution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鱼尾草对模拟富营养化和酸雨共污染的生理响应及藻类抑制
富营养化和酸雨是许多水体必须应对的两大威胁。富营养化和气候变化加速了蓝藻爆发的大范围爆发,因为两者都变得更加严重。Pontederia cordata是一种园林观赏植物,具有抑制部分藻类生长和去除水中总氮(TN)和总磷(TP)的作用。在本研究中,我们研究了模拟酸雨和富营养化共同污染如何影响P. cordata的生长生理和抑制藻类生长的能力。在轻度富营养化(2 mg·L−1 TN、0.4 mg·L−1 TP和15 mg·L−1 CODMn)或弱酸雨(pH = 5.0)条件下,草芥通过稳定叶片超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性,减轻了细胞膜脂过氧化程度,保证了植株的正常生长。在轻度富营养化和酸雨条件下,培养的海藻水样通过降低铜绿微囊藻细胞的Chl a含量和SOD活性,保持了较强的抑藻作用。以酸雨为主要抑制因子的复合胁迫加上中度或重度富营养化,抑制了P. cordata的生长,这可能减少了抑藻化感物质的输入,从而降低了其抑藻能力。综上所述,虫草在轻度富营养化水体和酸雨(pH≥4)中具有应用潜力。这些发现为进一步研究复合污染环境下的植物修复和藻类控制提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Diagnostic value of 18F-PSMA-1007 PET/CT for predicting the pathological grade of prostate cancer. Correction. Wilms' tumor 1 -targeting cancer vaccine: Recent advancements and future perspectives. Toll-like receptor agonists as cancer vaccine adjuvants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1