{"title":"Microphysical Characteristics of Warm Convective Precipitation in Tokyo","authors":"Ryohei Misumi, Yasushi Uji, Takeshi Maesaka","doi":"10.2151/sola.2024-002","DOIUrl":null,"url":null,"abstract":"</p><p>It is generally considered that warm rain is less likely to occur in urban areas where the air is polluted. However, heavy precipitation from shallow convective clouds is occasionally reported in Tokyo. In this study, we observed microphysical characteristics of warm convective precipitation in Tokyo on 19-20 August 2019 using an X-band polarimetric radar, a Ka-band radar, a cloud droplet spectrometer and an optical disdrometer. The radar reflectivity and the specific differential phase from the X-band radar tended to increase in the lower layers, suggesting accretion growth of raindrops. On the other hand, the differential reflectivity decreased in the lower layers, suggesting the presence of low concentrations of large raindrops near the echo top. According to range height indicators, precipitation clouds were composed of streak-like echoes. The Z-R relationship on the ground was close to that of the Marshall-Palmer raindrop size distribution. Mean cloud number concentration (<i>N</i><sub>c</sub>) was 370 cm<sup>−3</sup>, which was larger than the average of low-level clouds in Tokyo (213 cm<sup>−3</sup>). Parcel model simulations suggested that warm rain could be initiated when <i>N</i><sub>c</sub> < 1200 cm<sup>−3</sup>, although the threshold of <i>N</i><sub>c</sub> depends on the cloud base temperature.</p>\n<p></p>","PeriodicalId":49501,"journal":{"name":"Sola","volume":"51 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sola","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2151/sola.2024-002","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
It is generally considered that warm rain is less likely to occur in urban areas where the air is polluted. However, heavy precipitation from shallow convective clouds is occasionally reported in Tokyo. In this study, we observed microphysical characteristics of warm convective precipitation in Tokyo on 19-20 August 2019 using an X-band polarimetric radar, a Ka-band radar, a cloud droplet spectrometer and an optical disdrometer. The radar reflectivity and the specific differential phase from the X-band radar tended to increase in the lower layers, suggesting accretion growth of raindrops. On the other hand, the differential reflectivity decreased in the lower layers, suggesting the presence of low concentrations of large raindrops near the echo top. According to range height indicators, precipitation clouds were composed of streak-like echoes. The Z-R relationship on the ground was close to that of the Marshall-Palmer raindrop size distribution. Mean cloud number concentration (Nc) was 370 cm−3, which was larger than the average of low-level clouds in Tokyo (213 cm−3). Parcel model simulations suggested that warm rain could be initiated when Nc < 1200 cm−3, although the threshold of Nc depends on the cloud base temperature.
期刊介绍:
SOLA (Scientific Online Letters on the Atmosphere) is a peer-reviewed, Open Access, online-only journal. It publishes scientific discoveries and advances in understanding in meteorology, climatology, the atmospheric sciences and related interdisciplinary areas. SOLA focuses on presenting new and scientifically rigorous observations, experiments, data analyses, numerical modeling, data assimilation, and technical developments as quickly as possible. It achieves this via rapid peer review and publication of research letters, published as Regular Articles.
Published and supported by the Meteorological Society of Japan, the journal follows strong research and publication ethics principles. Most manuscripts receive a first decision within one month and a decision upon resubmission within a further month. Accepted articles are then quickly published on the journal’s website, where they are easily accessible to our broad audience.