Synthesizing evidence from clinical trials with dynamic interactive argument trees

IF 1.6 3区 工程技术 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Biomedical Semantics Pub Date : 2022-06-03 DOI:10.1186/s13326-022-00270-8
Sanchez-Graillet, Olivia, Witte, Christian, Grimm, Frank, Grautoff, Steffen, Ell, Basil, Cimiano, Philipp
{"title":"Synthesizing evidence from clinical trials with dynamic interactive argument trees","authors":"Sanchez-Graillet, Olivia, Witte, Christian, Grimm, Frank, Grautoff, Steffen, Ell, Basil, Cimiano, Philipp","doi":"10.1186/s13326-022-00270-8","DOIUrl":null,"url":null,"abstract":"Evidence-based medicine propagates that medical/clinical decisions are made by taking into account high-quality evidence, most notably in the form of randomized clinical trials. Evidence-based decision-making requires aggregating the evidence available in multiple trials to reach –by means of systematic reviews– a conclusive recommendation on which treatment is best suited for a given patient population. However, it is challenging to produce systematic reviews to keep up with the ever-growing number of published clinical trials. Therefore, new computational approaches are necessary to support the creation of systematic reviews that include the most up-to-date evidence.We propose a method to synthesize the evidence available in clinical trials in an ad-hoc and on-demand manner by automatically arranging such evidence in the form of a hierarchical argument that recommends a therapy as being superior to some other therapy along a number of key dimensions corresponding to the clinical endpoints of interest. The method has also been implemented as a web tool that allows users to explore the effects of excluding different points of evidence, and indicating relative preferences on the endpoints. Through two use cases, our method was shown to be able to generate conclusions similar to the ones of published systematic reviews. To evaluate our method implemented as a web tool, we carried out a survey and usability analysis with medical professionals. The results show that the tool was perceived as being valuable, acknowledging its potential to inform clinical decision-making and to complement the information from existing medical guidelines. The method presented is a simple but yet effective argumentation-based method that contributes to support the synthesis of clinical trial evidence. A current limitation of the method is that it relies on a manually populated knowledge base. This problem could be alleviated by deploying natural language processing methods to extract the relevant information from publications.","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"22 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Semantics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13326-022-00270-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Evidence-based medicine propagates that medical/clinical decisions are made by taking into account high-quality evidence, most notably in the form of randomized clinical trials. Evidence-based decision-making requires aggregating the evidence available in multiple trials to reach –by means of systematic reviews– a conclusive recommendation on which treatment is best suited for a given patient population. However, it is challenging to produce systematic reviews to keep up with the ever-growing number of published clinical trials. Therefore, new computational approaches are necessary to support the creation of systematic reviews that include the most up-to-date evidence.We propose a method to synthesize the evidence available in clinical trials in an ad-hoc and on-demand manner by automatically arranging such evidence in the form of a hierarchical argument that recommends a therapy as being superior to some other therapy along a number of key dimensions corresponding to the clinical endpoints of interest. The method has also been implemented as a web tool that allows users to explore the effects of excluding different points of evidence, and indicating relative preferences on the endpoints. Through two use cases, our method was shown to be able to generate conclusions similar to the ones of published systematic reviews. To evaluate our method implemented as a web tool, we carried out a survey and usability analysis with medical professionals. The results show that the tool was perceived as being valuable, acknowledging its potential to inform clinical decision-making and to complement the information from existing medical guidelines. The method presented is a simple but yet effective argumentation-based method that contributes to support the synthesis of clinical trial evidence. A current limitation of the method is that it relies on a manually populated knowledge base. This problem could be alleviated by deploying natural language processing methods to extract the relevant information from publications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用动态交互论证树综合临床试验证据
循证医学宣传医疗/临床决策是在考虑高质量证据的基础上做出的,最显著的是随机临床试验。基于证据的决策需要汇总多个试验中可获得的证据,通过系统评价,就哪种治疗方法最适合特定患者群体提出结论性建议。然而,为了跟上不断增长的已发表临床试验的数量,进行系统的综述是一项挑战。因此,新的计算方法是必要的,以支持创建包括最新证据的系统评价。我们提出了一种方法,以一种特殊的、按需的方式综合临床试验中可用的证据,通过自动排列这些证据,以分层论证的形式推荐一种治疗优于其他治疗,并沿着与感兴趣的临床终点相对应的一些关键维度。该方法也被实现为一个网络工具,允许用户探索排除不同证据点的影响,并表明端点上的相对偏好。通过两个用例,我们的方法被证明能够产生类似于已发表的系统评论的结论。为了评估我们的方法作为网络工具的实施情况,我们与医疗专业人员进行了调查和可用性分析。结果表明,该工具被认为是有价值的,承认它有可能为临床决策提供信息,并补充现有医疗指南的信息。提出的方法是一种简单但有效的基于论证的方法,有助于支持临床试验证据的合成。该方法当前的一个限制是它依赖于手动填充的知识库。这个问题可以通过部署自然语言处理方法从出版物中提取相关信息来缓解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomedical Semantics
Journal of Biomedical Semantics MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
4.20
自引率
5.30%
发文量
28
审稿时长
30 weeks
期刊介绍: Journal of Biomedical Semantics addresses issues of semantic enrichment and semantic processing in the biomedical domain. The scope of the journal covers two main areas: Infrastructure for biomedical semantics: focusing on semantic resources and repositories, meta-data management and resource description, knowledge representation and semantic frameworks, the Biomedical Semantic Web, and semantic interoperability. Semantic mining, annotation, and analysis: focusing on approaches and applications of semantic resources; and tools for investigation, reasoning, prediction, and discoveries in biomedicine.
期刊最新文献
Expanding the concept of ID conversion in TogoID by introducing multi-semantic and label features. FAIR Data Cube, a FAIR data infrastructure for integrated multi-omics data analysis. Dynamic Retrieval Augmented Generation of Ontologies using Artificial Intelligence (DRAGON-AI). MeSH2Matrix: combining MeSH keywords and machine learning for biomedical relation classification based on PubMed. Annotation of epilepsy clinic letters for natural language processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1