{"title":"Dynamics of magnetic flux tubes in accretion disks of Herbig Ae/Be stars","authors":"Sergey A. Khaibrakhmanov, Alexander E. Dudorov","doi":"10.1515/astro-2022-0017","DOIUrl":null,"url":null,"abstract":"The dynamics of magnetic flux tubes (MFTs) in the accretion disk of typical Herbig Ae/Be star (HAeBeS) with fossil large-scale magnetic field is modeled taking into account the buoyant and drag forces, radiative heat exchange with the surrounding gas, and the magnetic field of the disk. The structure of the disk is simulated using our magnetohydrodynamic model, taking into account the heating of the surface layers of the disk with the stellar radiation. The simulations show that MFTs periodically rise from the innermost region of the disk with speeds up to 10–12 km <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_astro-2022-0017_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"normal\">s</m:mi> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\rm{s}}}^{-1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. MFTs experience decaying magnetic oscillations under the action of the external magnetic field near the disk’s surface. The oscillation period increases with distance from the star and initial plasma beta of the MFT, ranging from several hours at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_astro-2022-0017_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>r</m:mi> <m:mo>=</m:mo> <m:mn>0.012</m:mn> <m:mspace width=\"0.33em\" /> <m:mi mathvariant=\"normal\">au</m:mi> </m:math> <jats:tex-math>r=0.012\\hspace{0.33em}{\\rm{au}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> up to several months at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_astro-2022-0017_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>r</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> <m:mspace width=\"0.33em\" /> <m:mi mathvariant=\"normal\">au</m:mi> </m:math> <jats:tex-math>r=1\\hspace{0.33em}{\\rm{au}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The oscillations are characterized by pulsations of the MFT’s characteristics including its temperature. We argue that the oscillations can produce observed IR-variability of HAeBeSs, which would be more intense than in the case of T Tauri stars, since the disks of HAeBeSs are hotter, denser, and have stronger magnetic field.","PeriodicalId":19514,"journal":{"name":"Open Astronomy","volume":"20 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/astro-2022-0017","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamics of magnetic flux tubes (MFTs) in the accretion disk of typical Herbig Ae/Be star (HAeBeS) with fossil large-scale magnetic field is modeled taking into account the buoyant and drag forces, radiative heat exchange with the surrounding gas, and the magnetic field of the disk. The structure of the disk is simulated using our magnetohydrodynamic model, taking into account the heating of the surface layers of the disk with the stellar radiation. The simulations show that MFTs periodically rise from the innermost region of the disk with speeds up to 10–12 km s−1{{\rm{s}}}^{-1}. MFTs experience decaying magnetic oscillations under the action of the external magnetic field near the disk’s surface. The oscillation period increases with distance from the star and initial plasma beta of the MFT, ranging from several hours at r=0.012aur=0.012\hspace{0.33em}{\rm{au}} up to several months at r=1aur=1\hspace{0.33em}{\rm{au}}. The oscillations are characterized by pulsations of the MFT’s characteristics including its temperature. We argue that the oscillations can produce observed IR-variability of HAeBeSs, which would be more intense than in the case of T Tauri stars, since the disks of HAeBeSs are hotter, denser, and have stronger magnetic field.
Open AstronomyPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
1.30
自引率
14.30%
发文量
37
审稿时长
16 weeks
期刊介绍:
The journal disseminates research in both observational and theoretical astronomy, astrophysics, solar physics, cosmology, galactic and extragalactic astronomy, high energy particles physics, planetary science, space science and astronomy-related astrobiology, presenting as well the surveys dedicated to astronomical history and education.