Nipunika H. Godage, Song S. Qian, Erasmus Cudjoe and Emanuela Gionfriddo*,
{"title":"Enhancing Quantitative Analysis of Xenobiotics in Blood Plasma through Cross-Matrix Calibration and Bayesian Hierarchical Modeling","authors":"Nipunika H. Godage, Song S. Qian, Erasmus Cudjoe and Emanuela Gionfriddo*, ","doi":"10.1021/acsmeasuresciau.3c00049","DOIUrl":null,"url":null,"abstract":"<p >This study addresses the challenges of matrix effects and interspecies plasma protein binding (PPB) on measurement variability during method validation across diverse plasma types (human, rat, rabbit, and bovine). Accurate measurements of small molecules in plasma samples often require matrix-matched calibration approaches with the use of specific plasma types, which may have limited availability or affordability. To mitigate the costs associated with human plasma measurements, we explore in this work the potential of cross-matrix-matched calibration using Bayesian hierarchical modeling (BHM) to correct for matrix effects associated with PPB. We initially developed a targeted quantitative approach utilizing biocompatible solid-phase microextraction coupled with liquid chromatography–mass spectrometry for xenobiotic analysis in plasma. The method was evaluated for absolute matrix effects across human, bovine, rat, and rabbit plasma comparing pre- and postmatrix extraction standards. Absolute matrix effects from 96 to 108% for most analytes across plasma sources indicate that the biocompatibility of the extraction phase minimizes interference coextraction. However, the extent of PPB in different media can still affect the accuracy of the measurement when the extraction of small molecules is carried out via free concentration, as in the case of microextraction techniques. In fact, while matrix-matched calibration revealed high accuracy, cross-matrix calibration (e.g., using a calibration curve generated from bovine plasma) proved inadequate for precise measurements in human plasma. A BHM was used to calculate correction factors for each analyte within each plasma type, successfully mitigating the measurement bias resulting from diverse calibration curve types used to quantify human plasma samples. This work contributes to the development of cost-effective, efficient calibration strategies for biofluids. Leveraging easily accessible plasma sources, like bovine plasma, for method optimization and validation prior to analyzing costly plasma (e.g., human plasma) holds substantial advantages applicable to biomonitoring and pharmacokinetic studies.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00049","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.3c00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses the challenges of matrix effects and interspecies plasma protein binding (PPB) on measurement variability during method validation across diverse plasma types (human, rat, rabbit, and bovine). Accurate measurements of small molecules in plasma samples often require matrix-matched calibration approaches with the use of specific plasma types, which may have limited availability or affordability. To mitigate the costs associated with human plasma measurements, we explore in this work the potential of cross-matrix-matched calibration using Bayesian hierarchical modeling (BHM) to correct for matrix effects associated with PPB. We initially developed a targeted quantitative approach utilizing biocompatible solid-phase microextraction coupled with liquid chromatography–mass spectrometry for xenobiotic analysis in plasma. The method was evaluated for absolute matrix effects across human, bovine, rat, and rabbit plasma comparing pre- and postmatrix extraction standards. Absolute matrix effects from 96 to 108% for most analytes across plasma sources indicate that the biocompatibility of the extraction phase minimizes interference coextraction. However, the extent of PPB in different media can still affect the accuracy of the measurement when the extraction of small molecules is carried out via free concentration, as in the case of microextraction techniques. In fact, while matrix-matched calibration revealed high accuracy, cross-matrix calibration (e.g., using a calibration curve generated from bovine plasma) proved inadequate for precise measurements in human plasma. A BHM was used to calculate correction factors for each analyte within each plasma type, successfully mitigating the measurement bias resulting from diverse calibration curve types used to quantify human plasma samples. This work contributes to the development of cost-effective, efficient calibration strategies for biofluids. Leveraging easily accessible plasma sources, like bovine plasma, for method optimization and validation prior to analyzing costly plasma (e.g., human plasma) holds substantial advantages applicable to biomonitoring and pharmacokinetic studies.
期刊介绍:
ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.