Detecting reed canary grass (Phalaris arundinacea L.) patches from UAV-based digital surface model images—A case study in a timothy (Phleum pretense L.) meadow field

IF 1.1 4区 农林科学 Q3 AGRICULTURE, MULTIDISCIPLINARY Grassland Science Pub Date : 2023-11-23 DOI:10.1111/grs.12415
Rena Yoshitoshi, Seiichi Sakanoue, Nariyasu Watanabe
{"title":"Detecting reed canary grass (Phalaris arundinacea L.) patches from UAV-based digital surface model images—A case study in a timothy (Phleum pretense L.) meadow field","authors":"Rena Yoshitoshi,&nbsp;Seiichi Sakanoue,&nbsp;Nariyasu Watanabe","doi":"10.1111/grs.12415","DOIUrl":null,"url":null,"abstract":"<p>Accurate determination of the weed ratio in artificial meadows is critical for efficient pasture renovation. Reed canary grass (<i>Phalaris arundinacea</i> L., RCG) is treated as a troublesome grass in the Hokkaido region of Japan because of its low feed quality and poor palatability in dairy farming. In the present study, we examined a method of identifying the dominant area of RCG in timothy (<i>Phleum pretense</i> L.) meadows by applying the Canny method to unmanned aerial vehicle (UAV)-based digital surface model (DSM) images. Comparing the actual RCG patches observed in a field survey (50 m quadrats × 4 places) with the predicted patches, the pixel-based recall and F value were 0.90 and 0.83, respectively. These results demonstrated that the area of RCG can be detected using a simple method without supervised data or deep learning. This study is expected to be utilized in a wide variety of applications using relative height differences.</p>","PeriodicalId":56078,"journal":{"name":"Grassland Science","volume":"70 1","pages":"35-40"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grassland Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/grs.12415","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate determination of the weed ratio in artificial meadows is critical for efficient pasture renovation. Reed canary grass (Phalaris arundinacea L., RCG) is treated as a troublesome grass in the Hokkaido region of Japan because of its low feed quality and poor palatability in dairy farming. In the present study, we examined a method of identifying the dominant area of RCG in timothy (Phleum pretense L.) meadows by applying the Canny method to unmanned aerial vehicle (UAV)-based digital surface model (DSM) images. Comparing the actual RCG patches observed in a field survey (50 m quadrats × 4 places) with the predicted patches, the pixel-based recall and F value were 0.90 and 0.83, respectively. These results demonstrated that the area of RCG can be detected using a simple method without supervised data or deep learning. This study is expected to be utilized in a wide variety of applications using relative height differences.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从基于无人机的数字表面模型图像中检测芦苇金丝雀草(Phalaris arundinacea L.)斑块——以蒂莫西(Phleum pretense L.)草甸为例
人工草甸杂草比的准确测定是草地有效改造的关键。芦苇金丝雀草(Phalaris arundinacea L., RCG)在日本北海道地区被视为一种麻烦的草,因为它的饲料质量低,在奶牛养殖中适口性差。在本研究中,我们研究了一种将Canny方法应用于基于无人机(UAV)的数字表面模型(DSM)图像来识别蒂莫西草甸(Phleum pretense L.) RCG优势区域的方法。将现场实测RCG斑块(50 m样方× 4位)与预测斑块进行比较,基于像素的召回率和F值分别为0.90和0.83。这些结果表明,可以使用一种简单的方法来检测RCG的区域,而无需监督数据或深度学习。这项研究有望在使用相对高度差的各种应用中得到广泛利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Grassland Science
Grassland Science Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
2.70
自引率
7.70%
发文量
38
审稿时长
>12 weeks
期刊介绍: Grassland Science is the official English language journal of the Japanese Society of Grassland Science. It publishes original research papers, review articles and short reports in all aspects of grassland science, with an aim of presenting and sharing knowledge, ideas and philosophies on better management and use of grasslands, forage crops and turf plants for both agricultural and non-agricultural purposes across the world. Contributions from anyone, non-members as well as members, are welcome in any of the following fields: grassland environment, landscape, ecology and systems analysis; pasture and lawn establishment, management and cultivation; grassland utilization, animal management, behavior, nutrition and production; forage conservation, processing, storage, utilization and nutritive value; physiology, morphology, pathology and entomology of plants; breeding and genetics; physicochemical property of soil, soil animals and microorganisms and plant nutrition; economics in grassland systems.
期刊最新文献
Issue Information Cattle dung detection in pastures from drone images using YOLOv5 Potassium fertilization and defoliation intensity effects on forage characteristics of “BRS Zuri” guineagrass Phylogenomic identification and overexpression of plant size–related genes in Setaria viridis and rice Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1