Complementary broad-range mitochondrial markers improve eDNA characterization of marine metazoan diversity

IF 1.5 4区 环境科学与生态学 Q3 BIODIVERSITY CONSERVATION Marine Biodiversity Pub Date : 2023-11-17 DOI:10.1007/s12526-023-01385-6
Zhi Ting Yip, Z. B. Randolph Quek, Danwei Huang
{"title":"Complementary broad-range mitochondrial markers improve eDNA characterization of marine metazoan diversity","authors":"Zhi Ting Yip, Z. B. Randolph Quek, Danwei Huang","doi":"10.1007/s12526-023-01385-6","DOIUrl":null,"url":null,"abstract":"<p>Environmental DNA (eDNA) metabarcoding leverages genetic material present in the habitat for detection of species and has great potential for rapid biodiversity assessment. Comprehensive eDNA characterization of marine metazoan biodiversity requires broad amplification of genetic markers or complementary loci to detect a wide diversity of taxa. In this study, we tested the effectiveness of the universal cytochrome c oxidase subunit I (COI) and marine vertebrate 16S ribosomal RNA markers to recover coastal marine taxa from eDNA samples collected along the urban coast of Singapore. We recovered 260 molecular operational taxonomic units (MOTUs) from a total of 12 L of water (triplicates of 1 L at each of four sites) with no overlap of MOTUs observed between the two assays despite the expectation that the COI primer set could potentially amplify a broad range of metazoans. Notably, our COI assay identified mainly invertebrates, while the 16S assay primarily recovered vertebrates. For the relatively new 16S barcoding marker, we applied two species delimitation programs on a curated, comprehensive vertebrate dataset to determine the distance threshold between intra- and interspecific comparisons (2%). Community analyses revealed that metazoan communities were distinct between sites for both assays. In addition, DNA metabarcoding was shown to be helpful for the monitoring of non-indigenous and threatened marine species, such as <i>Mytella strigata</i> and <i>Aetobatus ocellatus</i>, respectively. Our findings highlight the potential of a complementary multi-marker approach for biomonitoring invertebrates and vertebrates comprehensively across distinct habitats.</p>","PeriodicalId":18201,"journal":{"name":"Marine Biodiversity","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biodiversity","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12526-023-01385-6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Environmental DNA (eDNA) metabarcoding leverages genetic material present in the habitat for detection of species and has great potential for rapid biodiversity assessment. Comprehensive eDNA characterization of marine metazoan biodiversity requires broad amplification of genetic markers or complementary loci to detect a wide diversity of taxa. In this study, we tested the effectiveness of the universal cytochrome c oxidase subunit I (COI) and marine vertebrate 16S ribosomal RNA markers to recover coastal marine taxa from eDNA samples collected along the urban coast of Singapore. We recovered 260 molecular operational taxonomic units (MOTUs) from a total of 12 L of water (triplicates of 1 L at each of four sites) with no overlap of MOTUs observed between the two assays despite the expectation that the COI primer set could potentially amplify a broad range of metazoans. Notably, our COI assay identified mainly invertebrates, while the 16S assay primarily recovered vertebrates. For the relatively new 16S barcoding marker, we applied two species delimitation programs on a curated, comprehensive vertebrate dataset to determine the distance threshold between intra- and interspecific comparisons (2%). Community analyses revealed that metazoan communities were distinct between sites for both assays. In addition, DNA metabarcoding was shown to be helpful for the monitoring of non-indigenous and threatened marine species, such as Mytella strigata and Aetobatus ocellatus, respectively. Our findings highlight the potential of a complementary multi-marker approach for biomonitoring invertebrates and vertebrates comprehensively across distinct habitats.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
互补的宽范围线粒体标记改善海洋后生动物多样性的eDNA表征
环境DNA (Environmental DNA, eDNA)元条形码利用存在于生境中的遗传物质进行物种检测,在生物多样性快速评估中具有巨大潜力。海洋后生动物生物多样性的综合eDNA鉴定需要广泛扩增遗传标记或互补位点,以检测广泛的分类群多样性。在这项研究中,我们测试了通用细胞色素c氧化酶亚基I (COI)和海洋脊椎动物16S核糖体RNA标记从新加坡城市海岸收集的eDNA样本中恢复沿海海洋分类群的有效性。我们从总共12 L的水中恢复了260个分子操作分类单位(motu),尽管期望COI引物集可能扩增广泛的后生动物,但两次检测之间没有观察到motu重叠。值得注意的是,我们的COI分析主要识别无脊椎动物,而16S分析主要恢复脊椎动物。对于相对较新的16S条形码标记,我们在一个精心策划的综合脊椎动物数据集上应用了两个物种划分程序来确定种内和种间比较的距离阈值(2%)。群落分析显示,两种测定方法在不同地点的后生动物群落是不同的。此外,DNA元条形码技术还可用于非本地和濒危海洋物种的监测,如褐花栗霉(Mytella strigata)和cellatus Aetobatus。我们的研究结果强调了一种互补的多标记方法在不同栖息地全面监测无脊椎动物和脊椎动物的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Marine Biodiversity
Marine Biodiversity BIODIVERSITY CONSERVATION-MARINE & FRESHWATER BIOLOGY
CiteScore
3.30
自引率
6.20%
发文量
56
期刊介绍: Marine Biodiversity is a peer-reviewed international journal devoted to all aspects of biodiversity research on marine ecosystems. The journal is a relaunch of the well-known Senckenbergiana maritima" and covers research at gene, species and ecosystem level that focuses on describing the actors (genes and species), the patterns (gradients and distributions) and understanding of the processes responsible for the regulation and maintenance of diversity in marine systems. Also included are the study of species interactions (symbioses, parasitism, etc.) and the role of species in structuring marine ecosystem functioning. Marine Biodiversity offers articles in the category original paper, short note, Oceanarium and review article. It forms a platform for marine biodiversity researchers from all over the world for the exchange of new information and discussions on concepts and exciting discoveries. - Covers research in all aspects of biodiversity in marine ecosystems - Describes the actors, the patterns and the processes responsible for diversity - Offers peer-reviewed original papers, short communications, review articles and news (Oceanarium) - No page charges
期刊最新文献
Non-indigenous species of Bryozoa from anthropogenic habitats in the Bay of Cádiz (South Iberian Peninsula) New iEcology records and range extension for the clown wedgefish Rhynchobatus cooki High haplotype diversity and strong phylogeographic structure in the invasive jellyfish Blackfordia virginica population highlight its complex demographic history in Korea The first report of adult blue shark surviving severe head impalement by a swordfish, with an overview of similar incidents Cheilostomatida (Bryozoa) from settlement panels deployed in the Azores (central North Atlantic)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1