Covert-channels in FPGA-enabled SmartSSDs

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Reconfigurable Technology and Systems Pub Date : 2023-12-04 DOI:10.1145/3635312
Theodoros Trochatos, Anthony Etim, Jakub Szefer
{"title":"Covert-channels in FPGA-enabled SmartSSDs","authors":"Theodoros Trochatos, Anthony Etim, Jakub Szefer","doi":"10.1145/3635312","DOIUrl":null,"url":null,"abstract":"<p>Cloud computing providers today offer access to a variety of devices, which users can rent and access remotely in a shared setting. Among these devices are SmartSSDs, which a solid-state disks (SSD) augmented with an FPGA, enabling users to instantiate custom circuits within the FPGA, including potentially malicious circuits for power and temperature measurement. Normally, cloud users have no remote access to power and temperature data, but with SmartSSDs they could abuse the FPGA component to instantiate circuits to learn this information. Additionally, custom power waster circuits can be instantiated within the FPGA. This paper shows for the first time that by leveraging ring oscillator sensors and power wasters, numerous covert-channels in FPGA-enabled SmartSSDs could be used to transmit information. This work presents two channels in single-tenant setting (SmartSSD is used by one user at a time) and two channels in multi-tenant setting (FPGA and SSD inside SmartSSD is shared by different users). The presented covert channels can reach close to 100% accuracy. Meanwhile, bandwidth of the channels can be easily scaled by cloud users renting more SmartSSDs as the bandwidth of the covert channels is proportional to number of SmartSSD used.</p>","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"64 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3635312","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Cloud computing providers today offer access to a variety of devices, which users can rent and access remotely in a shared setting. Among these devices are SmartSSDs, which a solid-state disks (SSD) augmented with an FPGA, enabling users to instantiate custom circuits within the FPGA, including potentially malicious circuits for power and temperature measurement. Normally, cloud users have no remote access to power and temperature data, but with SmartSSDs they could abuse the FPGA component to instantiate circuits to learn this information. Additionally, custom power waster circuits can be instantiated within the FPGA. This paper shows for the first time that by leveraging ring oscillator sensors and power wasters, numerous covert-channels in FPGA-enabled SmartSSDs could be used to transmit information. This work presents two channels in single-tenant setting (SmartSSD is used by one user at a time) and two channels in multi-tenant setting (FPGA and SSD inside SmartSSD is shared by different users). The presented covert channels can reach close to 100% accuracy. Meanwhile, bandwidth of the channels can be easily scaled by cloud users renting more SmartSSDs as the bandwidth of the covert channels is proportional to number of SmartSSD used.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持fpga的smartssd中的转换通道
如今,云计算提供商提供对各种设备的访问,用户可以在共享设置中租用和远程访问这些设备。这些设备中有smartssd,它是一个固态磁盘(SSD),增强了FPGA,使用户能够在FPGA内实例化自定义电路,包括用于功率和温度测量的潜在恶意电路。通常,云用户无法远程访问电源和温度数据,但使用smartssd,他们可以滥用FPGA组件来实例化电路以获取这些信息。此外,可在FPGA内实例化定制的功耗损耗电路。本文首次表明,通过利用环形振荡器传感器和功耗浪费器,可以使用fpga支持的smartssd中的许多转换通道来传输信息。本工作在单租户(SmartSSD由一个用户一次使用)和多租户(SmartSSD内部的FPGA和SSD由不同用户共享)的情况下提供了两个通道。所提出的隐蔽信道可以达到接近100%的准确率。同时,由于隐蔽通道的带宽与使用的SmartSSD数量成正比,云用户可以租用更多的SmartSSD来扩展通道的带宽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Reconfigurable Technology and Systems
ACM Transactions on Reconfigurable Technology and Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.90
自引率
8.70%
发文量
79
审稿时长
>12 weeks
期刊介绍: TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right. Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications. -The board and systems architectures of a reconfigurable platform. -Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity. -Languages and compilers for reconfigurable systems. -Logic synthesis and related tools, as they relate to reconfigurable systems. -Applications on which success can be demonstrated. The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.) In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.
期刊最新文献
End-to-end codesign of Hessian-aware quantized neural networks for FPGAs DyRecMul: Fast and Low-Cost Approximate Multiplier for FPGAs using Dynamic Reconfiguration Dynamic-ACTS - A Dynamic Graph Analytics Accelerator For HBM-Enabled FPGAs NC-Library: Expanding SystemC Capabilities for Nested reConfigurable Hardware Modelling PQA: Exploring the Potential of Product Quantization in DNN Hardware Acceleration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1