Development of Genome-wide SSR Markers for Physical Map Construction with PCR-based Polymorphic SSRs in Jute (Corchorus Spp.)

IF 1.8 4区 生物学 Q2 PLANT SCIENCES Tropical Plant Biology Pub Date : 2021-09-20 DOI:10.1007/s12042-021-09301-7
Niyitanga, Sylvain, Yao, Jiayu, Ibrahim, Aminu kurawa, Afzal, Muhammad Zohaib, Chen, Siyuan, Zhang, Liwu
{"title":"Development of Genome-wide SSR Markers for Physical Map Construction with PCR-based Polymorphic SSRs in Jute (Corchorus Spp.)","authors":"Niyitanga, Sylvain, Yao, Jiayu, Ibrahim, Aminu kurawa, Afzal, Muhammad Zohaib, Chen, Siyuan, Zhang, Liwu","doi":"10.1007/s12042-021-09301-7","DOIUrl":null,"url":null,"abstract":"<p>Despite substantial efforts in the past decades towards the development of microsatellites or SSR (simple sequence repeat) markers in jute, there is still an urgent necessity for additional SSR markers for performing genetic and breeding investigations. The availability of reference genomic sequences for both diploid cultivated jute species enabled us to identify a total of 154,715 and 160,173 SSRs from the <i>C. capsularis</i> and <i>C. olitorius</i> genomes, respectively. 6,337 and 7,012 total SSRs with a density of 187.6 and 185.01 SSR/Mb were also mined in coding sequences (CDS). 12bp was the most common repeat length in both genomic and CDS. Di- and tetra-nucleotide motifs were prevailed in the genomic sequences, while trinucleotides in the CDS. SSR frequency declined with increasing repeat units in both species. ATT and AT motifs were the most common in the genome. AG and CTT were prevalent in the CDS of both species while GC and CGC motifs were infrequent. Further, we used the flanking sequences of identified SSRs (from both species) to design a total of 1,117 SSR primer pairs. Genetic diversity analysis based on 110 sampled SSRs in 24 genotypes displayed high polymorphism. The first physical map with 535 PCR-based polymorphic SSRs were constructed by taking <i>C. capsularis</i> as the reference genome. These resources will advance genetics and breeding research in jute.</p>","PeriodicalId":54356,"journal":{"name":"Tropical Plant Biology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12042-021-09301-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Despite substantial efforts in the past decades towards the development of microsatellites or SSR (simple sequence repeat) markers in jute, there is still an urgent necessity for additional SSR markers for performing genetic and breeding investigations. The availability of reference genomic sequences for both diploid cultivated jute species enabled us to identify a total of 154,715 and 160,173 SSRs from the C. capsularis and C. olitorius genomes, respectively. 6,337 and 7,012 total SSRs with a density of 187.6 and 185.01 SSR/Mb were also mined in coding sequences (CDS). 12bp was the most common repeat length in both genomic and CDS. Di- and tetra-nucleotide motifs were prevailed in the genomic sequences, while trinucleotides in the CDS. SSR frequency declined with increasing repeat units in both species. ATT and AT motifs were the most common in the genome. AG and CTT were prevalent in the CDS of both species while GC and CGC motifs were infrequent. Further, we used the flanking sequences of identified SSRs (from both species) to design a total of 1,117 SSR primer pairs. Genetic diversity analysis based on 110 sampled SSRs in 24 genotypes displayed high polymorphism. The first physical map with 535 PCR-based polymorphic SSRs were constructed by taking C. capsularis as the reference genome. These resources will advance genetics and breeding research in jute.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于pcr的黄麻多态SSR构建物理图谱的全基因组SSR标记的开发
尽管在过去的几十年里,人们在黄麻微卫星或SSR(简单序列重复)标记的开发方面做出了巨大的努力,但仍然迫切需要更多的SSR标记来进行遗传和育种研究。利用这两种二倍体栽培黄麻的参考基因组序列,我们分别从荚膜黄麻和小黄麻基因组中鉴定出154,715个和160,173个ssr位点。在编码序列(CDS)中共挖掘到6337和7012个SSR,分别为187.6和185.01个SSR/Mb。在基因组和CDS中,12bp是最常见的重复长度。二核苷酸和四核苷酸基序在基因组序列中占主导地位,而三核苷酸基序在CDS中占主导地位。SSR频率随重复单位的增加而降低。ATT和AT基序在基因组中最为常见。AG和CTT基序在两种物种的CDS中普遍存在,而GC和CGC基序较少。此外,我们利用鉴定到的SSR侧翼序列(来自两个物种)设计了总共1117对SSR引物。对24个基因型的110个SSRs进行遗传多样性分析,结果显示多态性较高。以荚膜荚膜荚膜荚膜荚膜荚膜荚膜荚膜荚膜荚膜荚膜荚膜荚膜荚膜荚膜荚膜荚膜荚膜荚膜荚膜荚膜荚膜荚膜荚膜荚膜荚膜荚膜荚膜荚膜荚膜荚膜。这些资源将促进黄麻的遗传和育种研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tropical Plant Biology
Tropical Plant Biology PLANT SCIENCES-
CiteScore
3.70
自引率
0.00%
发文量
15
期刊介绍: Tropical Plant Biology covers the most rapidly advancing aspects of tropical plant biology including physiology, evolution, development, cellular and molecular biology, genetics, genomics, genomic ecology, and molecular breeding. It publishes articles of original research, but it also accepts review articles and publishes occasional special issues focused on a single tropical crop species or breakthrough. Information published in this journal guides effort to increase the productivity and quality of tropical plants and preserve the world’s plant diversity. The journal serves as the primary source of newly published information for researchers and professionals in all of the aforementioned areas of tropical science.
期刊最新文献
Multi-Gene Identification and Pathogenicity Analysis of Sugarcane Pokkah Boeng Disease Pathogens in Yunnan, China Genome-wide Identification and Functional Analysis of RNAi Gene Families in Papaya (Carica papaya L.) Identification of novel marker-trait associations and candidate genes for combined low phosphorus and nitrogen-deficient conditions in rice at seedling stage Comprehensive Analysis of the Aquaporin Genes in Eucalyptus grandis Suggests Potential Targets for Drought Stress Tolerance Genome-Wide Identification and Expression Analysis of WRKY Transcription Factor Genes in Passion Fruit (Passiflora edulis)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1