Oliver Fischer, Anh Dinh Bui, Florian Schindler, Daniel Macdonald, Stefan W. Glunz, Hieu T. Nguyen, Martin C. Schubert
{"title":"Versatile implied open-circuit voltage imaging method and its application in monolithic tandem solar cells","authors":"Oliver Fischer, Anh Dinh Bui, Florian Schindler, Daniel Macdonald, Stefan W. Glunz, Hieu T. Nguyen, Martin C. Schubert","doi":"10.1002/pip.3754","DOIUrl":null,"url":null,"abstract":"As the efficiency of perovskite silicon tandem solar cells is increasing, the upscaling for industrial production is coming into focus. Spatially resolved, quantitative, fast, and reliable contactless measurement techniques are demanded for quality assurance and to pinpoint the cause of performance losses in perovskite silicon tandem solar cells. In this publication, we present a measurement method based on spectrally integrated photoluminescence (PL) imaging to extract subcell-selective implied open-circuit (\n<math altimg=\"urn:x-wiley:10627995:media:pip3754:pip3754-math-0001\" display=\"inline\" location=\"graphic/pip3754-math-0001.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>i</mi>\n<msub>\n<mi>V</mi>\n<mi>oc</mi>\n</msub>\n</mrow>\n$$ i{V}_{\\mathrm{oc}} $$</annotation>\n</semantics></math>) images from monolithic perovskite silicon tandem solar cells. We validate the approach using spectrally resolved absolute PL measurements based on an integrating sphere for the perovskite top cell and PL-calibrated carrier lifetime images for the silicon bottom cell. Additionally, <math altimg=\"urn:x-wiley:10627995:media:pip3754:pip3754-math-0002\" display=\"inline\" location=\"graphic/pip3754-math-0002.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msub>\n<mi>V</mi>\n<mi>oc</mi>\n</msub>\n</mrow>\n$$ {V}_{\\mathrm{oc}} $$</annotation>\n</semantics></math> measurements of solar cells with low contact losses are used to validate the new measurement technique. We find a good agreement of the <math altimg=\"urn:x-wiley:10627995:media:pip3754:pip3754-math-0003\" display=\"inline\" location=\"graphic/pip3754-math-0003.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>i</mi>\n<msub>\n<mi>V</mi>\n<mi>oc</mi>\n</msub>\n</mrow>\n$$ i{V}_{\\mathrm{oc}} $$</annotation>\n</semantics></math> images with the validating measurements with a maximum deviation of well below 1% compared to the validation measurements.","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"34 1","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pip.3754","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
As the efficiency of perovskite silicon tandem solar cells is increasing, the upscaling for industrial production is coming into focus. Spatially resolved, quantitative, fast, and reliable contactless measurement techniques are demanded for quality assurance and to pinpoint the cause of performance losses in perovskite silicon tandem solar cells. In this publication, we present a measurement method based on spectrally integrated photoluminescence (PL) imaging to extract subcell-selective implied open-circuit (
) images from monolithic perovskite silicon tandem solar cells. We validate the approach using spectrally resolved absolute PL measurements based on an integrating sphere for the perovskite top cell and PL-calibrated carrier lifetime images for the silicon bottom cell. Additionally, measurements of solar cells with low contact losses are used to validate the new measurement technique. We find a good agreement of the images with the validating measurements with a maximum deviation of well below 1% compared to the validation measurements.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.