{"title":"Study on Further Improvement of Anti-tsunami Ability of a New Type Bridge Pier","authors":"Wanli Yang, Hailin Hou, Quanlong Zhu, Junling Liu, Fuhai Li, Lingyuan Zhou","doi":"10.1142/s1793431122500063","DOIUrl":null,"url":null,"abstract":"<p>Compared with circular, square and diamond piers, the N60 pier proposed in our previous study has been numerically proven to be effective in reducing tsunami force. The relatively stronger vortices behind the N60 pier are responsible for the not-small-enough tsunami force on the N60 pier. The asymmetry in shape makes the N60 pier fail to reduce flood force because flood propagates in the opposite direction of tsunami bore. A series of new type piers named <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">N</mtext></mstyle><mi>α</mi><mo>−</mo><mi>β</mi></math></span><span></span> are proposed to further improve the anti-tsunami ability of the N60 by computational fluid dynamics (CFD) method among which the N60-60 pier is proven to be most effective in reducing tsunami force, and its tsunami force mitigation mechanism is analyzed numerically. Further, the physical experiments were conducted to validate the N60 pier and the new type pier N60-60. Results show that compared with circular, square and diamond piers, the N60 pier is indeed capable of reducing tsunami force, and compared with the N60 pier, the new type N60-60 pier is capable of further reducing tsunami force. The order of magnitudes of tsunami forces on piers is: N60-60 <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mo><</mo></math></span><span></span> N60 <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mo><</mo></math></span><span></span> circular <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo><</mo></math></span><span></span> diamond <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mo><</mo></math></span><span></span> square.</p>","PeriodicalId":50213,"journal":{"name":"Journal of Earthquake and Tsunami","volume":"67 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earthquake and Tsunami","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1142/s1793431122500063","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Compared with circular, square and diamond piers, the N60 pier proposed in our previous study has been numerically proven to be effective in reducing tsunami force. The relatively stronger vortices behind the N60 pier are responsible for the not-small-enough tsunami force on the N60 pier. The asymmetry in shape makes the N60 pier fail to reduce flood force because flood propagates in the opposite direction of tsunami bore. A series of new type piers named are proposed to further improve the anti-tsunami ability of the N60 by computational fluid dynamics (CFD) method among which the N60-60 pier is proven to be most effective in reducing tsunami force, and its tsunami force mitigation mechanism is analyzed numerically. Further, the physical experiments were conducted to validate the N60 pier and the new type pier N60-60. Results show that compared with circular, square and diamond piers, the N60 pier is indeed capable of reducing tsunami force, and compared with the N60 pier, the new type N60-60 pier is capable of further reducing tsunami force. The order of magnitudes of tsunami forces on piers is: N60-60 N60 circular diamond square.
期刊介绍:
Journal of Earthquake and Tsunami provides a common forum for scientists and engineers working in the areas of earthquakes and tsunamis to communicate and interact with one another and thereby enhance the opportunities for such cross-fertilization of ideas. The Journal publishes original papers pertaining to state-of-the-art research and development in Geological and Seismological Setting; Ground Motion, Site and Building Response; Tsunami Generation, Propagation, Damage and Mitigation, as well as Education and Risk Management following an earthquake or a tsunami.
We welcome papers in the following categories:
Geological and Seismological Aspects
Tectonics: (Geology - earth processes)
Fault processes and earthquake generation: seismology (earthquake processes)
Earthquake wave propagation: geophysics
Remote sensing
Earthquake Engineering
Geotechnical hazards and response
Effects on buildings and structures
Risk analysis and management
Retrofitting and remediation
Education and awareness
Material Behaviour
Soil
Reinforced concrete
Steel
Tsunamis
Tsunamigenic sources
Tsunami propagation: Physical oceanography
Run-up and damage: wave hydraulics.