Efficient and robust active learning methods for interactive database exploration

Enhui Huang, Yanlei Diao, Anna Liu, Liping Peng, Luciano Di Palma
{"title":"Efficient and robust active learning methods for interactive database exploration","authors":"Enhui Huang, Yanlei Diao, Anna Liu, Liping Peng, Luciano Di Palma","doi":"10.1007/s00778-023-00816-x","DOIUrl":null,"url":null,"abstract":"<p>There is an increasing gap between fast growth of data and the limited human ability to comprehend data. Consequently, there has been a growing demand of data management tools that can bridge this gap and help the user retrieve high-value content from data more effectively. In this work, we propose an interactive data exploration system as a new database service, using an approach called “explore-by-example.” Our new system is designed to assist the user in performing highly effective data exploration while reducing the human effort in the process. We cast the explore-by-example problem in a principled “active learning” framework. However, traditional active learning suffers from two fundamental limitations: slow convergence and lack of robustness under label noise. To overcome the slow convergence and label noise problems, we bring the properties of important classes of database queries to bear on the design of new algorithms and optimizations for active learning-based database exploration. Evaluation results using real-world datasets and user interest patterns show that our new system, both in the noise-free case and in the label noise case, significantly outperforms state-of-the-art active learning techniques and data exploration systems in accuracy while achieving the desired efficiency for interactive data exploration.</p>","PeriodicalId":501532,"journal":{"name":"The VLDB Journal","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The VLDB Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00778-023-00816-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There is an increasing gap between fast growth of data and the limited human ability to comprehend data. Consequently, there has been a growing demand of data management tools that can bridge this gap and help the user retrieve high-value content from data more effectively. In this work, we propose an interactive data exploration system as a new database service, using an approach called “explore-by-example.” Our new system is designed to assist the user in performing highly effective data exploration while reducing the human effort in the process. We cast the explore-by-example problem in a principled “active learning” framework. However, traditional active learning suffers from two fundamental limitations: slow convergence and lack of robustness under label noise. To overcome the slow convergence and label noise problems, we bring the properties of important classes of database queries to bear on the design of new algorithms and optimizations for active learning-based database exploration. Evaluation results using real-world datasets and user interest patterns show that our new system, both in the noise-free case and in the label noise case, significantly outperforms state-of-the-art active learning techniques and data exploration systems in accuracy while achieving the desired efficiency for interactive data exploration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于交互式数据库探索的高效、健壮的主动学习方法
数据的快速增长与人类有限的理解数据的能力之间的差距越来越大。因此,对能够弥合这一差距并帮助用户更有效地从数据中检索高价值内容的数据管理工具的需求不断增长。在这项工作中,我们提出了一种交互式数据探索系统作为一种新的数据库服务,使用一种称为“按例探索”的方法。我们的新系统旨在帮助用户执行高效的数据探索,同时减少过程中的人力。我们将实例探索问题置于原则性的“主动学习”框架中。然而,传统的主动学习有两个基本的局限性:收敛速度慢和在标签噪声下缺乏鲁棒性。为了克服缓慢的收敛和标签噪声问题,我们将数据库查询的重要类别的属性引入到新算法的设计和基于主动学习的数据库探索的优化中。使用真实数据集和用户兴趣模式的评估结果表明,我们的新系统,无论是在无噪声情况下还是在标签噪声情况下,在准确性方面都明显优于最先进的主动学习技术和数据探索系统,同时实现了交互式数据探索的预期效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A versatile framework for attributed network clustering via K-nearest neighbor augmentation Discovering critical vertices for reinforcement of large-scale bipartite networks DumpyOS: A data-adaptive multi-ary index for scalable data series similarity search Enabling space-time efficient range queries with REncoder AutoCTS++: zero-shot joint neural architecture and hyperparameter search for correlated time series forecasting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1