Revisiting Audio Pattern Recognition for Asthma Medication Adherence: Evaluation with the RDA Benchmark Suite

Nikos D. Fakotakis, Stavros Nousias, Gerasimos Arvanitis, Evangelia I. Zacharaki, Konstantinos Moustakas
{"title":"Revisiting Audio Pattern Recognition for Asthma Medication Adherence: Evaluation with the RDA Benchmark Suite","authors":"Nikos D. Fakotakis, Stavros Nousias, Gerasimos Arvanitis, Evangelia I. Zacharaki, Konstantinos Moustakas","doi":"arxiv-2205.15360","DOIUrl":null,"url":null,"abstract":"Asthma is a common, usually long-term respiratory disease with negative\nimpact on society and the economy worldwide. Treatment involves using medical\ndevices (inhalers) that distribute medication to the airways, and its\nefficiency depends on the precision of the inhalation technique. Health\nmonitoring systems equipped with sensors and embedded with sound signal\ndetection enable the recognition of drug actuation and could be powerful tools\nfor reliable audio content analysis. This paper revisits audio pattern\nrecognition and machine learning techniques for asthma medication adherence\nassessment and presents the Respiratory and Drug Actuation (RDA)\nSuite(https://gitlab.com/vvr/monitoring-medication-adherence/rda-benchmark) for\nbenchmarking and further research. The RDA Suite includes a set of tools for\naudio processing, feature extraction and classification and is provided along\nwith a dataset consisting of respiratory and drug actuation sounds. The\nclassification models in RDA are implemented based on conventional and advanced\nmachine learning and deep network architectures. This study provides a\ncomparative evaluation of the implemented approaches, examines potential\nimprovements and discusses challenges and future tendencies.","PeriodicalId":501533,"journal":{"name":"arXiv - CS - General Literature","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - General Literature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2205.15360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Asthma is a common, usually long-term respiratory disease with negative impact on society and the economy worldwide. Treatment involves using medical devices (inhalers) that distribute medication to the airways, and its efficiency depends on the precision of the inhalation technique. Health monitoring systems equipped with sensors and embedded with sound signal detection enable the recognition of drug actuation and could be powerful tools for reliable audio content analysis. This paper revisits audio pattern recognition and machine learning techniques for asthma medication adherence assessment and presents the Respiratory and Drug Actuation (RDA) Suite(https://gitlab.com/vvr/monitoring-medication-adherence/rda-benchmark) for benchmarking and further research. The RDA Suite includes a set of tools for audio processing, feature extraction and classification and is provided along with a dataset consisting of respiratory and drug actuation sounds. The classification models in RDA are implemented based on conventional and advanced machine learning and deep network architectures. This study provides a comparative evaluation of the implemented approaches, examines potential improvements and discusses challenges and future tendencies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新审视音频模式识别对哮喘药物依从性的影响:RDA基准套件的评估
哮喘是一种常见的长期呼吸系统疾病,在世界范围内对社会和经济产生负面影响。治疗包括使用医疗设备(吸入器)将药物分配到气道,其效率取决于吸入技术的精度。配备传感器并嵌入声音信号检测的健康监测系统能够识别药物驱动,并可能成为可靠音频内容分析的强大工具。本文回顾了用于哮喘药物依从性评估的音频模式识别和机器学习技术,并提出了呼吸和药物驱动(RDA)套件(https://gitlab.com/vvr/monitoring-medication-adherence/rda-benchmark)用于基准测试和进一步研究。RDA套件包括一套用于音频处理、特征提取和分类的工具,并提供了一个由呼吸和药物驱动声音组成的数据集。RDA中的分类模型是基于传统和先进的机器学习和深度网络架构实现的。本研究对实施的方法进行了比较评估,检查了潜在的改进,并讨论了挑战和未来的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A guideline for the methodology chapter in computer science dissertations Eternal Sunshine of the Mechanical Mind: The Irreconcilability of Machine Learning and the Right to be Forgotten A Comprehensive Overview of Fish-Eye Camera Distortion Correction Methods The 4+1 Model of Data Science Computational Natural Philosophy: A Thread from Presocratics through Turing to ChatGPT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1