COEM: Cross-Modal Embedding for MetaCell Identification

Haiyi Mao, Minxue Jia, Jason Xiaotian Dou Haotian Zhang Panayiotis V. Benos
{"title":"COEM: Cross-Modal Embedding for MetaCell Identification","authors":"Haiyi Mao, Minxue Jia, Jason Xiaotian Dou Haotian Zhang Panayiotis V. Benos","doi":"arxiv-2207.07734","DOIUrl":null,"url":null,"abstract":"Metacells are disjoint and homogeneous groups of single-cell profiles,\nrepresenting discrete and highly granular cell states. Existing metacell\nalgorithms tend to use only one modality to infer metacells, even though\nsingle-cell multi-omics datasets profile multiple molecular modalities within\nthe same cell. Here, we present \\textbf{C}ross-M\\textbf{O}dal\n\\textbf{E}mbedding for \\textbf{M}etaCell Identification (COEM), which utilizes\nan embedded space leveraging the information of both scATAC-seq and scRNA-seq\nto perform aggregation, balancing the trade-off between fine resolution and\nsufficient sequencing coverage. COEM outperforms the state-of-the-art method\nSEACells by efficiently identifying accurate and well-separated metacells\nacross datasets with continuous and discrete cell types. Furthermore, COEM\nsignificantly improves peak-to-gene association analyses, and facilitates\ncomplex gene regulatory inference tasks.","PeriodicalId":501533,"journal":{"name":"arXiv - CS - General Literature","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - General Literature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2207.07734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metacells are disjoint and homogeneous groups of single-cell profiles, representing discrete and highly granular cell states. Existing metacell algorithms tend to use only one modality to infer metacells, even though single-cell multi-omics datasets profile multiple molecular modalities within the same cell. Here, we present \textbf{C}ross-M\textbf{O}dal \textbf{E}mbedding for \textbf{M}etaCell Identification (COEM), which utilizes an embedded space leveraging the information of both scATAC-seq and scRNA-seq to perform aggregation, balancing the trade-off between fine resolution and sufficient sequencing coverage. COEM outperforms the state-of-the-art method SEACells by efficiently identifying accurate and well-separated metacells across datasets with continuous and discrete cell types. Furthermore, COEM significantly improves peak-to-gene association analyses, and facilitates complex gene regulatory inference tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
元细胞识别的跨模态嵌入
元细胞是不相交的、均匀的单细胞群,代表着离散的、高度颗粒状的细胞状态。现有的元细胞算法倾向于只使用一种模式来推断元细胞,即使单细胞多组学数据集描述同一细胞内的多种分子模式。在这里,我们提出了\textbf{用于元}细胞鉴定的\textbf{跨}\textbf{模态嵌入}\textbf{(COEM),它}利用嵌入空间利用scATAC-seq和scrna -seq的信息进行聚合,平衡了精细分辨率和足够的测序覆盖之间的权衡。COEM通过有效地识别具有连续和离散细胞类型的数据集中准确且分离良好的元细胞,优于最先进的方法seacells。此外,coem显著改善了峰-基因关联分析,并促进了复杂的基因调控推断任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A guideline for the methodology chapter in computer science dissertations Eternal Sunshine of the Mechanical Mind: The Irreconcilability of Machine Learning and the Right to be Forgotten A Comprehensive Overview of Fish-Eye Camera Distortion Correction Methods The 4+1 Model of Data Science Computational Natural Philosophy: A Thread from Presocratics through Turing to ChatGPT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1