Sociotechnical Harms: Scoping a Taxonomy for Harm Reduction

Renee Shelby, Shalaleh Rismani, Kathryn Henne, AJung Moon, Negar Rostamzadeh, Paul Nicholas, N'Mah Yilla, Jess Gallegos, Andrew Smart, Emilio Garcia, Gurleen Virk
{"title":"Sociotechnical Harms: Scoping a Taxonomy for Harm Reduction","authors":"Renee Shelby, Shalaleh Rismani, Kathryn Henne, AJung Moon, Negar Rostamzadeh, Paul Nicholas, N'Mah Yilla, Jess Gallegos, Andrew Smart, Emilio Garcia, Gurleen Virk","doi":"arxiv-2210.05791","DOIUrl":null,"url":null,"abstract":"Understanding the landscape of potential harms from algorithmic systems\nenables practitioners to better anticipate consequences of the systems they\nbuild. It also supports the prospect of incorporating controls to help minimize\nharms that emerge from the interplay of technologies and social and cultural\ndynamics. A growing body of scholarship has identified a wide range of harms\nacross different algorithmic technologies. However, computing research and\npractitioners lack a high level and synthesized overview of harms from\nalgorithmic systems arising at the micro-, meso-, and macro-levels of society.\nWe present an applied taxonomy of sociotechnical harms to support more\nsystematic surfacing of potential harms in algorithmic systems. Based on a\nscoping review of computing research ($n=172$), we identified five major themes\nrelated to sociotechnical harms - representational, allocative,\nquality-of-service, interpersonal harms, and social system/societal harms - and\nsub-themes. We describe these categories and conclude with a discussion of\nchallenges and opportunities for future research.","PeriodicalId":501533,"journal":{"name":"arXiv - CS - General Literature","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - General Literature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2210.05791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the landscape of potential harms from algorithmic systems enables practitioners to better anticipate consequences of the systems they build. It also supports the prospect of incorporating controls to help minimize harms that emerge from the interplay of technologies and social and cultural dynamics. A growing body of scholarship has identified a wide range of harms across different algorithmic technologies. However, computing research and practitioners lack a high level and synthesized overview of harms from algorithmic systems arising at the micro-, meso-, and macro-levels of society. We present an applied taxonomy of sociotechnical harms to support more systematic surfacing of potential harms in algorithmic systems. Based on a scoping review of computing research ($n=172$), we identified five major themes related to sociotechnical harms - representational, allocative, quality-of-service, interpersonal harms, and social system/societal harms - and sub-themes. We describe these categories and conclude with a discussion of challenges and opportunities for future research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社会技术危害:界定减少危害的分类
了解算法系统的潜在危害,可以让从业者更好地预测他们构建的系统的后果。它还支持整合控制的前景,以帮助最大限度地减少技术与社会和文化动态相互作用所产生的危害。越来越多的学者已经确定了不同算法技术的广泛危害。然而,计算研究和实践者缺乏对算法系统在社会微观、中观和宏观层面产生的危害的高水平和综合概述。我们提出了一种社会技术危害的应用分类,以支持更系统地揭示算法系统中的潜在危害。基于对计算机研究的综述(n=172),我们确定了与社会技术危害相关的五个主要主题——代表性危害、分配危害、服务质量危害、人际危害和社会系统/社会危害——以及子主题。我们描述了这些类别,并讨论了未来研究的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A guideline for the methodology chapter in computer science dissertations Eternal Sunshine of the Mechanical Mind: The Irreconcilability of Machine Learning and the Right to be Forgotten A Comprehensive Overview of Fish-Eye Camera Distortion Correction Methods The 4+1 Model of Data Science Computational Natural Philosophy: A Thread from Presocratics through Turing to ChatGPT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1