Reservoir computing for macroeconomic forecasting with mixed-frequency data

IF 6.9 2区 经济学 Q1 ECONOMICS International Journal of Forecasting Pub Date : 2023-12-07 DOI:10.1016/j.ijforecast.2023.10.009
Giovanni Ballarin , Petros Dellaportas , Lyudmila Grigoryeva , Marcel Hirt , Sophie van Huellen , Juan-Pablo Ortega
{"title":"Reservoir computing for macroeconomic forecasting with mixed-frequency data","authors":"Giovanni Ballarin ,&nbsp;Petros Dellaportas ,&nbsp;Lyudmila Grigoryeva ,&nbsp;Marcel Hirt ,&nbsp;Sophie van Huellen ,&nbsp;Juan-Pablo Ortega","doi":"10.1016/j.ijforecast.2023.10.009","DOIUrl":null,"url":null,"abstract":"<div><p>Macroeconomic forecasting has recently started embracing techniques that can deal with large-scale datasets and series with unequal release periods. Mixed-data sampling (MIDAS) and dynamic factor models (DFMs) are the two main state-of-the-art approaches to modeling series with non-homogeneous frequencies. We introduce a new framework, called the multi-frequency echo state network (MFESN), based on a relatively novel machine learning paradigm called reservoir computing. Echo state networks (ESNs) are recurrent neural networks formulated as nonlinear state-space systems with random state coefficients where only the observation map is subject to estimation. MFESNs are considerably more efficient than DFMs and can incorporate many series, as opposed to MIDAS models, which are prone to the curse of dimensionality. All methods are compared in extensive multistep forecasting exercises targeting U.S. GDP growth. We find that our MFESN models achieve superior or comparable performance over MIDAS and DFMs at a much lower computational cost.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 3","pages":"Pages 1206-1237"},"PeriodicalIF":6.9000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169207023001085/pdfft?md5=02cc0203937b906c9719e0df65a0dafe&pid=1-s2.0-S0169207023001085-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207023001085","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Macroeconomic forecasting has recently started embracing techniques that can deal with large-scale datasets and series with unequal release periods. Mixed-data sampling (MIDAS) and dynamic factor models (DFMs) are the two main state-of-the-art approaches to modeling series with non-homogeneous frequencies. We introduce a new framework, called the multi-frequency echo state network (MFESN), based on a relatively novel machine learning paradigm called reservoir computing. Echo state networks (ESNs) are recurrent neural networks formulated as nonlinear state-space systems with random state coefficients where only the observation map is subject to estimation. MFESNs are considerably more efficient than DFMs and can incorporate many series, as opposed to MIDAS models, which are prone to the curse of dimensionality. All methods are compared in extensive multistep forecasting exercises targeting U.S. GDP growth. We find that our MFESN models achieve superior or comparable performance over MIDAS and DFMs at a much lower computational cost.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用混合频率数据进行宏观经济预测的储层计算
宏观经济预测最近开始采用能够处理大规模数据集和不等发布期序列的技术。混合数据采样(MIDAS)和动态因子模型(DFMs)是对非均相频率序列建模的两种主要的先进方法。我们引入了一种新的框架,称为多频率回声状态网络(MFESN),它基于一种相对新颖的机器学习范式--水库计算。回声状态网络(ESN)是一种递归神经网络,它被表述为具有随机状态系数的非线性状态空间系统,其中只有观测图需要进行估计。与容易受到维度诅咒影响的 MIDAS 模型相比,MFESNs 比 DFMs 更有效,而且可以包含许多序列。在针对美国国内生产总值增长的广泛多步骤预测实践中,我们对所有方法进行了比较。我们发现,与 MIDAS 和 DFM 相比,我们的 MFESN 模型以更低的计算成本实现了更优或相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
期刊最新文献
Editorial Board Forecasting house price growth rates with factor models and spatio-temporal clustering Forecasting realized volatility with spillover effects: Perspectives from graph neural networks Sparse time-varying parameter VECMs with an application to modeling electricity prices Guest editorial: Forecasting for social good
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1