{"title":"Hydrodynamical characteristics of a pair of elliptical squirmers in a channel flow of power-law fluids","authors":"Chen Liu, Jianzhong Lin, Zhenyu Ouyang","doi":"10.1007/s00397-023-01420-0","DOIUrl":null,"url":null,"abstract":"<p>The locomotion state and motion type of elliptical squirmers in a channel flow of power-law fluids are simulated numerically. Three locomotion states (independent, coupled, related) and three types of motions (upstream, intermediate, downstream) for pairs of squirmers are found and identified. The effect of height difference (0.5 ~ 10) between the initial positions of two squirmers, aspect ratio (0.3 ~ 1.0), particle Reynolds numbers (0.5 ~ 10), self-propelling strength of the squirmers (− 9 to 9), and power-law index (0.4 ~ 1.5) of the fluid on the locomotion state and motion type of a pair of squirmers are explored, and the corresponding hydrodynamical characteristics are analyzed in detail. Head-to-head coupled structures and body-to-body coupled structures are observed for a pair of pullers and a pair of pushers, respectively. It is found that coupled structures are easy to be broken for squirmers with larger aspect ratio or larger particle Reynolds number and self-propelling strength. The movement characteristics of squirmers are closely related to the initial positions of squirmers in strong shear-thinning fluid, but not to the initial positions in strong shear-thickening fluid. The dependence of viscosity on shear will also significantly affect the flow velocity, thus changing the motion type of squirmers.</p>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"63 1","pages":"61 - 78"},"PeriodicalIF":2.3000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rheologica Acta","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00397-023-01420-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The locomotion state and motion type of elliptical squirmers in a channel flow of power-law fluids are simulated numerically. Three locomotion states (independent, coupled, related) and three types of motions (upstream, intermediate, downstream) for pairs of squirmers are found and identified. The effect of height difference (0.5 ~ 10) between the initial positions of two squirmers, aspect ratio (0.3 ~ 1.0), particle Reynolds numbers (0.5 ~ 10), self-propelling strength of the squirmers (− 9 to 9), and power-law index (0.4 ~ 1.5) of the fluid on the locomotion state and motion type of a pair of squirmers are explored, and the corresponding hydrodynamical characteristics are analyzed in detail. Head-to-head coupled structures and body-to-body coupled structures are observed for a pair of pullers and a pair of pushers, respectively. It is found that coupled structures are easy to be broken for squirmers with larger aspect ratio or larger particle Reynolds number and self-propelling strength. The movement characteristics of squirmers are closely related to the initial positions of squirmers in strong shear-thinning fluid, but not to the initial positions in strong shear-thickening fluid. The dependence of viscosity on shear will also significantly affect the flow velocity, thus changing the motion type of squirmers.
期刊介绍:
"Rheologica Acta is the official journal of The European Society of Rheology. The aim of the journal is to advance the science of rheology, by publishing high quality peer reviewed articles, invited reviews and peer reviewed short communications.
The Scope of Rheologica Acta includes:
- Advances in rheometrical and rheo-physical techniques, rheo-optics, microrheology
- Rheology of soft matter systems, including polymer melts and solutions, colloidal dispersions, cement, ceramics, glasses, gels, emulsions, surfactant systems, liquid crystals, biomaterials and food.
- Rheology of Solids, chemo-rheology
- Electro and magnetorheology
- Theory of rheology
- Non-Newtonian fluid mechanics, complex fluids in microfluidic devices and flow instabilities
- Interfacial rheology
Rheologica Acta aims to publish papers which represent a substantial advance in the field, mere data reports or incremental work will not be considered. Priority will be given to papers that are methodological in nature and are beneficial to a wide range of material classes. It should also be noted that the list of topics given above is meant to be representative, not exhaustive. The editors welcome feedback on the journal and suggestions for reviews and comments."