Local bow shock environment during magnetosheath jet formation: results from a hybrid-Vlasov simulation

IF 1.7 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS Annales Geophysicae Pub Date : 2023-12-07 DOI:10.5194/angeo-41-551-2023
Jonas Suni, Minna Palmroth, Lucile Turc, Markus Battarbee, Giulia Cozzani, Maxime Dubart, Urs Ganse, Harriet George, Evgeny Gordeev, Konstantinos Papadakis, Yann Pfau-Kempf, Vertti Tarvus, Fasil Tesema, Hongyang Zhou
{"title":"Local bow shock environment during magnetosheath jet formation: results from a hybrid-Vlasov simulation","authors":"Jonas Suni, Minna Palmroth, Lucile Turc, Markus Battarbee, Giulia Cozzani, Maxime Dubart, Urs Ganse, Harriet George, Evgeny Gordeev, Konstantinos Papadakis, Yann Pfau-Kempf, Vertti Tarvus, Fasil Tesema, Hongyang Zhou","doi":"10.5194/angeo-41-551-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Magnetosheath jets are plasma structures that are characterised by enhanced dynamic pressure and/or plasma velocity. In this study, we investigate the formation of magnetosheath jets in four two-dimensional simulation runs of the global magnetospheric hybrid-Vlasov model Vlasiator. We focus on jets whose origins were not clearly determined in a previous study using the same simulations (Suni et al., 2021) to have been associated with foreshock structures of enhanced dynamic pressure and magnetic field. We find that these jets can be divided into two categories based on their direction of propagation, either predominantly antisunward or predominantly toward the flanks of the magnetosphere. As antisunward-propagating jets can potentially impact the magnetopause and have effects on the magnetosphere, understanding which foreshock and bow shock phenomena are associated with them is important. The antisunward-propagating jets have properties indistinguishable from those of the jets found in the previous study. This indicates that the antisunward jets investigated in this paper belong to the same continuum as the jets previously found to be caused by foreshock structures; however, due to the criteria used in the previous study, they did not appear in this category before. These jets together make up 86 % of all jets in this study. The flankward-propagating jets make up 14 % of all jets and are different, showing no clear association with foreshock structures and exhibiting temperature anisotropy unlike the other jets. We suggest that they could consist of quasi-perpendicular magnetosheath plasma, indicating that these jets could be associated with local turning of the shock geometry from quasi-parallel to quasi-perpendicular. This turning could be due to bow shock reformation at the oblique shock caused by foreshock ultralow-frequency (ULF) wave activity.","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Geophysicae","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/angeo-41-551-2023","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Magnetosheath jets are plasma structures that are characterised by enhanced dynamic pressure and/or plasma velocity. In this study, we investigate the formation of magnetosheath jets in four two-dimensional simulation runs of the global magnetospheric hybrid-Vlasov model Vlasiator. We focus on jets whose origins were not clearly determined in a previous study using the same simulations (Suni et al., 2021) to have been associated with foreshock structures of enhanced dynamic pressure and magnetic field. We find that these jets can be divided into two categories based on their direction of propagation, either predominantly antisunward or predominantly toward the flanks of the magnetosphere. As antisunward-propagating jets can potentially impact the magnetopause and have effects on the magnetosphere, understanding which foreshock and bow shock phenomena are associated with them is important. The antisunward-propagating jets have properties indistinguishable from those of the jets found in the previous study. This indicates that the antisunward jets investigated in this paper belong to the same continuum as the jets previously found to be caused by foreshock structures; however, due to the criteria used in the previous study, they did not appear in this category before. These jets together make up 86 % of all jets in this study. The flankward-propagating jets make up 14 % of all jets and are different, showing no clear association with foreshock structures and exhibiting temperature anisotropy unlike the other jets. We suggest that they could consist of quasi-perpendicular magnetosheath plasma, indicating that these jets could be associated with local turning of the shock geometry from quasi-parallel to quasi-perpendicular. This turning could be due to bow shock reformation at the oblique shock caused by foreshock ultralow-frequency (ULF) wave activity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁鞘射流形成过程中的局部弓形冲击环境:混合弗拉索夫模拟的结果
摘要磁鞘喷流是一种等离子体结构,其特点是动压和/或等离子体速度增强。在本研究中,我们研究了在全球磁层混合-弗拉索夫模型 Vlasiator 的四次二维模拟运行中磁鞘喷流的形成。我们将重点放在喷流上,之前使用相同模拟进行的研究(Suni 等人,2021 年)没有明确确定这些喷流的起源与动压和磁场增强的前震结构有关。我们发现这些喷流可以根据其传播方向分为两类,一类主要是反向传播,另一类主要是向磁层侧翼传播。由于反向传播的射流有可能撞击磁层顶并对磁层产生影响,因此了解与之相关的前震和弓形冲击现象非常重要。反向传播射流的性质与之前研究中发现的射流没有区别。这表明本文研究的反顺向射流与之前发现的由前震结构引起的射流属于同一连续体;然而,由于之前研究中使用的标准,它们之前并未出现在这一类别中。在本次研究中,这些射流共占所有射流的 86%。侧向传播射流占所有射流的14%,与其他射流不同的是,它们与前震结构没有明显的联系,并表现出温度各向异性。我们认为它们可能由准垂直磁鞘等离子体组成,这表明这些射流可能与冲击几何形状从准平行到准垂直的局部转向有关。这种转向可能是由于前震超低频(ULF)波活动引起的斜冲击处的弓形冲击重整造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annales Geophysicae
Annales Geophysicae 地学-地球科学综合
CiteScore
4.30
自引率
0.00%
发文量
42
审稿时长
2 months
期刊介绍: Annales Geophysicae (ANGEO) is a not-for-profit international multi- and inter-disciplinary scientific open-access journal in the field of solar–terrestrial and planetary sciences. ANGEO publishes original articles and short communications (letters) on research of the Sun–Earth system, including the science of space weather, solar–terrestrial plasma physics, the Earth''s ionosphere and atmosphere, the magnetosphere, and the study of planets and planetary systems, the interaction between the different spheres of a planet, and the interaction across the planetary system. Topics range from space weathering, planetary magnetic field, and planetary interior and surface dynamics to the formation and evolution of planetary systems.
期刊最新文献
Ionospheric upwelling and the level of associated noise at solar minimum Sensitivity analysis of a Martian atmospheric column model with data from the Mars Science Laboratory Low-frequency solar radio type II bursts and their association with space weather events during the ascending phase of solar cycle 25 The investigation of June 21 and 25, 2015 CMEs using EUHFORIA Observations of ionospheric disturbances associated with the 2020 Beirut explosion by Defense Meteorological Satellite Program and ground-based ionosondes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1