{"title":"Model averaged tail area confidence intervals in nested linear regression models","authors":"Paul Kabaila, Ayesha Perera","doi":"10.1111/anzs.12402","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The performance, in terms of coverage and expected length, of the model averaged tail area (MATA) confidence interval, proposed by Turek & Fletcher (2012, <i>Computational Statistics & Data Analysis</i>, 56, 2809–2815), depends greatly on the data-based model weights used in its construction. We generalise the computationally convenient exact formulae due to Kabaila, Welsh & Abeysekera (2016, <i>Scandinavian Journal of Statistics</i>, 43, 35–48) for the coverage and expected length of this confidence interval for two nested linear regression models to the case of two or more nested linear regression models. This permits the numerical assessment of the performance, in terms of coverage probability and scaled expected length, of the MATA confidence interval for any given data-based model weights in the context of three or more nested linear regression models. We illustrate this numerical assessment of performance of the MATA confidence interval, for model weights based on any given Generalised Information Criterion, in the context of three nested linear regression models using the real life ‘Cholesterol’ data. This provides a very informative further exploration of the influence of these model weights on the performance of this confidence interval.</p>\n </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"65 4","pages":"364-378"},"PeriodicalIF":0.8000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12402","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
The performance, in terms of coverage and expected length, of the model averaged tail area (MATA) confidence interval, proposed by Turek & Fletcher (2012, Computational Statistics & Data Analysis, 56, 2809–2815), depends greatly on the data-based model weights used in its construction. We generalise the computationally convenient exact formulae due to Kabaila, Welsh & Abeysekera (2016, Scandinavian Journal of Statistics, 43, 35–48) for the coverage and expected length of this confidence interval for two nested linear regression models to the case of two or more nested linear regression models. This permits the numerical assessment of the performance, in terms of coverage probability and scaled expected length, of the MATA confidence interval for any given data-based model weights in the context of three or more nested linear regression models. We illustrate this numerical assessment of performance of the MATA confidence interval, for model weights based on any given Generalised Information Criterion, in the context of three nested linear regression models using the real life ‘Cholesterol’ data. This provides a very informative further exploration of the influence of these model weights on the performance of this confidence interval.
期刊介绍:
The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association.
The main body of the journal is divided into three sections.
The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data.
The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context.
The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.