Reconstruction of dynamical systems from data without time labels

Zhijun Zeng, Pipi Hu, Chenglong Bao, Yi Zhu, Zuoqiang Shi
{"title":"Reconstruction of dynamical systems from data without time labels","authors":"Zhijun Zeng, Pipi Hu, Chenglong Bao, Yi Zhu, Zuoqiang Shi","doi":"arxiv-2312.04038","DOIUrl":null,"url":null,"abstract":"In this paper, we study the method to reconstruct dynamical systems from data\nwithout time labels. Data without time labels appear in many applications, such\nas molecular dynamics, single-cell RNA sequencing etc. Reconstruction of\ndynamical system from time sequence data has been studied extensively. However,\nthese methods do not apply if time labels are unknown. Without time labels,\nsequence data becomes distribution data. Based on this observation, we propose\nto treat the data as samples from a probability distribution and try to\nreconstruct the underlying dynamical system by minimizing the distribution\nloss, sliced Wasserstein distance more specifically. Extensive experiment\nresults demonstrate the effectiveness of the proposed method.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"114 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.04038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the method to reconstruct dynamical systems from data without time labels. Data without time labels appear in many applications, such as molecular dynamics, single-cell RNA sequencing etc. Reconstruction of dynamical system from time sequence data has been studied extensively. However, these methods do not apply if time labels are unknown. Without time labels, sequence data becomes distribution data. Based on this observation, we propose to treat the data as samples from a probability distribution and try to reconstruct the underlying dynamical system by minimizing the distribution loss, sliced Wasserstein distance more specifically. Extensive experiment results demonstrate the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从无时间标签的数据中重建动力系统
本文研究了从无时间标签的数据中重建动力学系统的方法。无时间标签的数据出现在许多应用中,如分子动力学、单细胞 RNA 测序等。从时间序列数据重建动力学系统的研究已经非常广泛。然而,如果时间标签未知,这些方法就不适用了。没有时间标签,序列数据就变成了分布数据。基于这一观点,我们建议将数据视为概率分布的样本,并尝试通过最小化分布损失(更具体地说,是切片瓦瑟斯坦距离)来重建底层动力系统。大量实验结果证明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of the SQP Method for Hyperbolic PDE-Constrained Optimization in Acoustic Full Waveform Inversion Detection of a piecewise linear crack with one incident wave Randomized quasi-Monte Carlo and Owen's boundary growth condition: A spectral analysis Energy stable gradient flow schemes for shape and topology optimization in Navier-Stokes flows Exponential time propagators for elastodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1